[Date Prev][Date Next] [Thread Prev][Thread Next] [Date Index] [Thread Index]

Bug#861255: marked as done (unblock: python-multipletau/0.1.7+ds-1)



Your message dated Wed, 26 Apr 2017 16:42:00 +0000
with message-id <45ca70f1-4fe9-b46e-57d8-67b77ded3d93@thykier.net>
and subject line Re: Bug#861255: unblock: python-multipletau/0.1.7+ds-1
has caused the Debian Bug report #861255,
regarding unblock: python-multipletau/0.1.7+ds-1
to be marked as done.

This means that you claim that the problem has been dealt with.
If this is not the case it is now your responsibility to reopen the
Bug report if necessary, and/or fix the problem forthwith.

(NB: If you are a system administrator and have no idea what this
message is talking about, this may indicate a serious mail system
misconfiguration somewhere. Please contact owner@bugs.debian.org
immediately.)


-- 
861255: http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=861255
Debian Bug Tracking System
Contact owner@bugs.debian.org with problems
--- Begin Message ---
Package: release.debian.org
Severity: normal
User: release.debian.org@packages.debian.org
Usertags: unblock
X-Debbugs-Cc: mailatgoogl@gmail.com, debian-med-packaging@lists.alioth.debian.org

Please unblock package python-multipletau

There are changes fixing broken tests on i386 - bug #860624 and syntax
cleanup (pep8) which shouldn't affect the package.

unblock python-multipletau/0.1.7+ds-1

-- System Information:
Debian Release: 9.0
  APT prefers unstable
  APT policy: (500, 'unstable')
Architecture: amd64
 (x86_64)

Kernel: Linux 4.9.0-2-amd64 (SMP w/4 CPU cores)
Locale: LANG=en_US.UTF-8, LC_CTYPE=en_US.UTF-8 (charmap=UTF-8)
Shell: /bin/sh linked to /bin/dash
Init: sysvinit (via /sbin/init)
diff -Nru python-multipletau-0.1.6+ds/CHANGELOG python-multipletau-0.1.7+ds/CHANGELOG
--- python-multipletau-0.1.6+ds/CHANGELOG	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/CHANGELOG	2017-04-26 14:31:13.000000000 +0200
@@ -1,3 +1,9 @@
+0.1.7
+- code cleanup with pep8 and autopep8 
+- always use numpy dtypes
+- fix tests:
+    - take into account floating inaccuracies
+    - support i386 numpy dtypes
 0.1.6
 - also compute correlation for zero lag time (`G(tau==0)`)
 - support NumPy 1.11
diff -Nru python-multipletau-0.1.6+ds/debian/changelog python-multipletau-0.1.7+ds/debian/changelog
--- python-multipletau-0.1.6+ds/debian/changelog	2016-07-22 15:26:46.000000000 +0200
+++ python-multipletau-0.1.7+ds/debian/changelog	2017-04-26 15:00:54.000000000 +0200
@@ -1,3 +1,10 @@
+python-multipletau (0.1.7+ds-1) unstable; urgency=medium
+
+  * New upstream version 0.1.7+ds (Closes: #860624)
+  * Remove trailing whitespaces from changelog
+
+ -- Alexandre Mestiashvili <alex@biotec.tu-dresden.de>  Wed, 26 Apr 2017 15:00:54 +0200
+
 python-multipletau (0.1.6+ds-1) unstable; urgency=medium
 
   * Imported Upstream version 0.1.6+ds
@@ -32,16 +39,16 @@
   * cme fix dpkg-control; bumped debhelper to compat level 9
 
   [ Alexandre Mestiashvili ]
-  * d/control: cme fix dpkg, remove python{,3}-numpy dependency, 
+  * d/control: cme fix dpkg, remove python{,3}-numpy dependency,
     as it should  be resolved by ${python:Depends}
   * d/watch: add +ds suffix, as we delete tests/runtests.py
   * d/copyright: update copyright year and exclude tests/runtests.py blob
   * Imported Upstream version 0.1.5
-  * d/control: add python-nose to Build-Depends, add libjs-mathjax to 
+  * d/control: add python-nose to Build-Depends, add libjs-mathjax to
     -doc package
-  * d/patches/packaged-mathjax.path: use packaged copy of MathJax 
-  * d/rules: remove DH_VERBOSE, add stanza for tests, provide a workaround for 
-    the lintian's privacy-breach-generic warning, see #739300 for details 
+  * d/patches/packaged-mathjax.path: use packaged copy of MathJax
+  * d/rules: remove DH_VERBOSE, add stanza for tests, provide a workaround for
+    the lintian's privacy-breach-generic warning, see #739300 for details
   * d/python-multipletau-doc.install: install examples
 
  -- Alexandre Mestiashvili <alex@biotec.tu-dresden.de>  Tue, 15 Dec 2015 10:30:01 +0100
diff -Nru python-multipletau-0.1.6+ds/MANIFEST.in python-multipletau-0.1.7+ds/MANIFEST.in
--- python-multipletau-0.1.6+ds/MANIFEST.in	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/MANIFEST.in	2017-04-26 14:31:13.000000000 +0200
@@ -1,11 +1,6 @@
 include CHANGELOG
 include LICENSE
 include README.rst
-include tests/*.py
-include tests/*.md
-include tests/data/*.npy
-include examples/*.py
-include doc/*.py
-include doc/*.rst
-include doc/*.md
-include doc/extensions/*.py
+recursive-include examples *.py
+recursive-include doc *.py *.md *.rst
+recursive-include tests *.py *.md test_*.npy
diff -Nru python-multipletau-0.1.6+ds/multipletau/__init__.py python-multipletau-0.1.7+ds/multipletau/__init__.py
--- python-multipletau-0.1.6+ds/multipletau/__init__.py	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/multipletau/__init__.py	2017-04-26 14:31:13.000000000 +0200
@@ -1,27 +1,27 @@
 #!/usr/bin/env python
 # -*- coding: utf-8 -*-
-u""" 
-This package provides a multiple-τ algorithm for Python 2.7 and 
+u"""
+This package provides a multiple-τ algorithm for Python 2.7 and
 Python 3.x and requires the package :py:mod:`numpy`.
 
 Multipe-τ correlation is computed on a logarithmic scale (less
 data points are computed) and is thus much faster than conventional
 correlation on a linear scale such as  :py:func:`numpy.correlate`.
 
-Recommended literature 
+Recommended literature
 ----------------------
 
 - Klaus Schaetzel and Rainer Peters; *Noise on multiple-tau photon
   correlation data*. Proc. SPIE 1430, Photon Correlation
-  Spectroscopy: Multicomponent Systems, 109 (June 1, 1991);    
+  Spectroscopy: Multicomponent Systems, 109 (June 1, 1991);
   http://doi.org/10.1117/12.44160
-  
-- Thorsten Wohland, Rudolf Rigler, and Horst Vogel; *The Standard 
+
+- Thorsten Wohland, Rudolf Rigler, and Horst Vogel; *The Standard
   Deviation in Fluorescence Correlation Spectroscopy*. Biophysical
-  Journal, 80 (June 1, 2001);  
+  Journal, 80 (June 1, 2001);
   http://dx.doi.org/10.1016/S0006-3495(01)76264-9
 
-Obtaining multipletau 
+Obtaining multipletau
 ---------------------
 If you have Python and :py:mod:`numpy` installed, simply run
 
@@ -34,7 +34,7 @@
 Citing multipletau
 ------------------
 The multipletau package should be cited like this (replace "x.x.x"
-with the actual version of multipletau that you used and "DD Month YYYY"
+with the actual version of multipletau used and "DD Month YYYY"
 with a matching date).
 
 .. topic:: cite
diff -Nru python-multipletau-0.1.6+ds/multipletau/_multipletau.py python-multipletau-0.1.7+ds/multipletau/_multipletau.py
--- python-multipletau-0.1.6+ds/multipletau/_multipletau.py	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/multipletau/_multipletau.py	2017-04-26 14:31:13.000000000 +0200
@@ -1,6 +1,6 @@
 #!/usr/bin/python
 # -*- coding: utf-8 -*-
-""" 
+"""
 A multiple-τ algorithm for Python 2.7 and 3.x.
 
 Copyright (c) 2014 Paul Müller
@@ -11,7 +11,7 @@
 
   1. Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.
-   
+
   2. Redistributions in binary form must reproduce the above copyright
      notice, this list of conditions and the following disclaimer in
      the documentation and/or other materials provided with the
@@ -43,15 +43,15 @@
 
 def autocorrelate(a, m=16, deltat=1, normalize=False,
                   copy=True, dtype=None):
-    """ 
+    """
     Autocorrelation of a 1-dimensional sequence on a log2-scale.
 
-    This computes the correlation similar to 
+    This computes the correlation similar to
     :py:func:`numpy.correlate` for positive :math:`k` on a base 2
     logarithmic scale.
 
         :func:`numpy.correlate(a, a, mode="full")[len(a)-1:]`
-    
+
         :math:`z_k = \Sigma_n a_n a_{n+k}`
 
 
@@ -88,10 +88,11 @@
     curve decaying to zero.
 
     For experiments like e.g. fluorescence correlation spectroscopy,
-    the signal can be normalized to :math:`M-k` by invoking ``normalize = True``.           
+    the signal can be normalized to :math:`M-k`
+    by invoking ``normalize = True``.
 
-    For normalizing according to the behavior of :py:func:`numpy.correlate`,
-    use ``normalize = False``.
+    For normalizing according to the behavior
+    of :py:func:`numpy.correlate`, use ``normalize = False``.
 
     For complex arrays, this method falls back to the method
     :func:`correlate`.
@@ -100,7 +101,7 @@
     Examples
     --------
     >>> from multipletau import autocorrelate
-    >>> autocorrelate(range(42), m=2, dtype=np.float)
+    >>> autocorrelate(range(42), m=2, dtype=np.float_)
     array([[  0.00000000e+00,   2.38210000e+04],
            [  1.00000000e+00,   2.29600000e+04],
            [  2.00000000e+00,   2.21000000e+04],
@@ -126,21 +127,21 @@
                          copy=copy,
                          dtype=dtype)
     elif dtype.kind != "f":
-        warnings.warn("Input dtype is not float; casting to np.float!")
-        dtype = np.dtype(np.float)
+        warnings.warn("Input dtype is not float; casting to np.float_!")
+        dtype = np.dtype(np.float_)
 
     # If copy is false and dtype is the same as the input array,
     # then this line does not have an effect:
     trace = np.array(a, dtype=dtype, copy=copy)
 
     # Check parameters
-    if m//2 != m/2:
+    if m // 2 != m / 2:
         mold = m
-        m = np.int((m//2 + 1) * 2)
+        m = np.int_((m // 2 + 1) * 2)
         warnings.warn("Invalid value of m={}. Using m={} instead"
                       .format(mold, m))
     else:
-        m = np.int(m)
+        m = np.int_(m)
 
     N = N0 = trace.shape[0]
 
@@ -148,12 +149,12 @@
     # The integer k defines how many times we can average over
     # two neighboring array elements in order to obtain an array of
     # length just larger than m.
-    k = np.int(np.floor(np.log2(N/m)))
+    k = np.int_(np.floor(np.log2(N / m)))
 
     # In the base2 multiple-tau scheme, the length of the correlation
     # array is (only taking into account values that are computed from
     # traces that are just larger than m):
-    lenG = m + k*(m//2) + 1
+    lenG = m + k * (m // 2) + 1
 
     G = np.zeros((lenG, 2), dtype=dtype)
 
@@ -166,13 +167,13 @@
     if normalize:
         trace -= traceavg
         assert traceavg != 0, "Cannot normalize: Average of `a` is zero!"
-    
+
     # Otherwise the following for-loop will fail:
-    assert N >= 2*m, "len(a) must be larger than 2m!"
+    assert N >= 2 * m, "len(a) must be larger than 2m!"
 
     # Calculate autocorrelation function for first m+1 bins
     # Discrete convolution of m elements
-    for n in range(0, m+1):
+    for n in range(0, m + 1):
         G[n, 0] = deltat * n
         # This is the computationally intensive step
         G[n, 1] = np.sum(trace[:N - n] * trace[n:])
@@ -181,7 +182,7 @@
     # Now that we calculated the first m elements of G, let us
     # go on with the next m/2 elements.
     # Check if len(trace) is even:
-    if N%2 == 1:
+    if N % 2 == 1:
         N -= 1
     # Add up every second element
     trace = (trace[:N:2] + trace[1:N:2]) / 2
@@ -189,9 +190,9 @@
     # Start iteration for each m/2 values
     for step in range(1, k + 1):
         # Get the next m/2 values via correlation of the trace
-        for n in range(1, m//2 + 1):
-            npmd2 = n + m//2
-            idx = m + n + (step - 1) * m//2
+        for n in range(1, m // 2 + 1):
+            npmd2 = n + m // 2
+            idx = m + n + (step - 1) * m // 2
             if len(trace[:N - npmd2]) == 0:
                 # This is a shortcut that stops the iteration once the
                 # length of the trace is too small to compute a corre-
@@ -223,7 +224,7 @@
                 normstat[idx] = N - npmd2
                 normnump[idx] = N
         # Check if len(trace) is even:
-        if N%2 == 1:
+        if N % 2 == 1:
             N -= 1
         # Add up every second element
         trace = (trace[:N:2] + trace[1:N:2]) / 2
@@ -239,7 +240,7 @@
 
 def correlate(a, v, m=16, deltat=1, normalize=False,
               copy=True, dtype=None):
-    """ 
+    """
     Cross-correlation of two 1-dimensional sequences
     on a log2-scale.
 
@@ -251,9 +252,9 @@
 
         :math:`z_k = \Sigma_n a_n v_{n+k}`
 
-    Note that only the correlation in the positive direction is computed.
-    To obtain the correlation for negative lag times swap the input variables
-    ``a`` and ``v``.
+    Note that only the correlation in the positive direction is
+    computed. To obtain the correlation for negative lag times
+    swap the input variables ``a`` and ``v``.
 
     Parameters
     ----------
@@ -277,29 +278,30 @@
     Returns
     -------
     cross_correlation : ndarray of shape (N,2)
-        the lag time (1st column) and the cross-correlation (2nd column).
+        the lag time (column 1) and the cross-correlation (column2).
 
 
     Notes
     -----
     .. versionchanged :: 0.1.6
-       Compute the correlation for zero lag time and correctly normalize
-       the correlation for a complex input sequence `v`.
+       Compute the correlation for zero lag time and correctly
+       normalize the correlation for a complex input sequence `v`.
 
     The algorithm computes the correlation with the convention of the
     curve decaying to zero.
 
     For experiments like e.g. fluorescence correlation spectroscopy,
-    the signal can be normalized to :math:`M-k` by invoking ``normalize = True``.           
+    the signal can be normalized to :math:`M-k`
+    by invoking ``normalize = True``.
 
-    For normalizing according to the behavior of :py:func:`numpy.correlate`,
-    use ``normalize = False``.
+    For normalizing according to the behavior of
+    :py:func:`numpy.correlate`, use ``normalize = False``.
 
 
     Examples
     --------
     >>> from multipletau import correlate
-    >>> correlate(range(42), range(1,43), m=2, dtype=np.float)
+    >>> correlate(range(42), range(1,43), m=2, dtype=np.float_)
     array([[  0.00000000e+00,   2.46820000e+04],
            [  1.00000000e+00,   2.38210000e+04],
            [  2.00000000e+00,   2.29600000e+04],
@@ -322,17 +324,18 @@
         if dtype != dtype2:
             if dtype.kind == "c" or dtype2.kind == "c":
                 # The user might try to combine complex64 and float128.
-                warnings.warn("Input dtypes not equal; casting to np.complex!")
-                dtype = np.dtype(np.complex)
+                warnings.warn(
+                    "Input dtypes not equal; casting to np.complex_!")
+                dtype = np.dtype(np.complex_)
             else:
-                warnings.warn("Input dtypes not equal; casting to np.float!")
-                dtype = np.dtype(np.float)
+                warnings.warn("Input dtypes not equal; casting to np.float_!")
+                dtype = np.dtype(np.float_)
     else:
         dtype = np.dtype(dtype)
 
-    if not dtype.kind in ["c", "f"]:
-        warnings.warn("Input dtype is not float; casting to np.float!")
-        dtype = np.dtype(np.float)
+    if dtype.kind not in ["c", "f"]:
+        warnings.warn("Input dtype is not float; casting to np.float_!")
+        dtype = np.dtype(np.float_)
 
     trace1 = np.array(v, dtype=dtype, copy=copy)
 
@@ -350,26 +353,25 @@
         np.conjugate(trace1, out=trace1)
 
     # Check parameters
-    if m//2 != m/2:
+    if m // 2 != m / 2:
         mold = m
-        m = np.int(m//2 + 1) * 2
+        m = np.int_(m // 2 + 1) * 2
         warnings.warn("Invalid value of m={}. Using m={} instead"
                       .format(mold, m))
     else:
-        m = np.int(m)
-
+        m = np.int_(m)
 
     N = N0 = trace1.shape[0]
     # Find out the length of the correlation function.
     # The integer k defines how many times we can average over
     # two neighboring array elements in order to obtain an array of
     # length just larger than m.
-    k = np.int(np.floor(np.log2(N/m)))
+    k = np.int_(np.floor(np.log2(N / m)))
 
     # In the base2 multiple-tau scheme, the length of the correlation
     # array is (only taking into account values that are computed from
     # traces that are just larger than m):
-    lenG = m + k * m//2 + 1
+    lenG = m + k * m // 2 + 1
 
     G = np.zeros((lenG, 2), dtype=dtype)
     normstat = np.zeros(lenG, dtype=dtype)
@@ -381,7 +383,7 @@
         trace2 -= traceavg2
 
     # Otherwise the following for-loop will fail:
-    assert N >= 2*m, "len(a) must be larger than 2m!"
+    assert N >= 2 * m, "len(a) must be larger than 2m!"
 
     # Calculate autocorrelation function for first m+1 bins
     for n in range(0, m + 1):
@@ -390,7 +392,7 @@
         normstat[n] = N - n
         normnump[n] = N
     # Check if len(trace) is even:
-    if N%2 == 1:
+    if N % 2 == 1:
         N -= 1
     # Add up every second element
     trace1 = (trace1[:N:2] + trace1[1:N:2]) / 2
@@ -399,9 +401,9 @@
 
     for step in range(1, k + 1):
         # Get the next m/2 values of the trace
-        for n in range(1, m//2 + 1):
-            npmd2 = (n + m//2)
-            idx = m + n + (step - 1) * m//2
+        for n in range(1, m // 2 + 1):
+            npmd2 = (n + m // 2)
+            idx = m + n + (step - 1) * m // 2
             if len(trace1[:N - npmd2]) == 0:
                 # Abort
                 G = G[:idx - 1]
@@ -416,7 +418,7 @@
                 normnump[idx] = N
 
         # Check if len(trace) is even:
-        if N%2 == 1:
+        if N % 2 == 1:
             N -= 1
         # Add up every second element
         trace1 = (trace1[:N:2] + trace1[1:N:2]) / 2
@@ -457,7 +459,7 @@
     Returns
     -------
     cross_correlation : ndarray of shape (N,2)
-        the lag time (1st column) and the cross-correlation (2nd column).
+        the lag time (column 1) and the cross-correlation (column 2).
 
 
     Notes
@@ -485,7 +487,7 @@
         N = len(Gd)
         m = N - np.arange(N)
         Gd /= m * avg * vvg
-    
+
     G = np.zeros((len(Gd), 2), dtype=dtype)
     G[:, 1] = Gd
     G[:, 0] = np.arange(len(Gd)) * deltat
diff -Nru python-multipletau-0.1.6+ds/multipletau/_version.py python-multipletau-0.1.7+ds/multipletau/_version.py
--- python-multipletau-0.1.6+ds/multipletau/_version.py	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/multipletau/_version.py	2017-04-26 14:31:13.000000000 +0200
@@ -12,7 +12,7 @@
 
 # Put the entire script into a `True` statement and add the hint
 # `pragma: no cover` to ignore code coverage here.
-if True: # pragma: no cover
+if True:  # pragma: no cover
     import imp
     import os
     from os.path import join, abspath, dirname
@@ -31,8 +31,8 @@
         """
         # make sure we are in a directory that belongs to the correct
         # repository.
-        ourdir  = dirname(abspath(__file__))
-        
+        ourdir = dirname(abspath(__file__))
+
         def _minimal_ext_cmd(cmd):
             # construct minimal environment
             env = {}
@@ -44,25 +44,25 @@
             env['LANGUAGE'] = 'C'
             env['LANG'] = 'C'
             env['LC_ALL'] = 'C'
-            out = subprocess.Popen(cmd, stdout = subprocess.PIPE, env=env).communicate()[0]
+            cmd = subprocess.Popen(cmd, stdout=subprocess.PIPE, env=env)
+            out = cmd.communicate()[0]
             return out
-    
+
         # change directory
         olddir = abspath(os.curdir)
         os.chdir(ourdir)
-        
+
         try:
             out = _minimal_ext_cmd(['git', 'describe', '--tags', 'HEAD'])
             GIT_REVISION = out.strip().decode('ascii')
         except OSError:
             GIT_REVISION = ""
-            
+
         # go back to original directory
         os.chdir(olddir)
-        
+
         return GIT_REVISION
-    
-    
+
     def load_version(versionfile):
         """ load version from version_save.py
         """
@@ -70,63 +70,64 @@
         try:
             _version_save = imp.load_source("_version_save", versionfile)
             longversion = _version_save.longversion
-        except:
+        except BaseException:
             try:
                 from ._version_save import longversion
-            except:
+            except BaseException:
                 try:
                     from _version_save import longversion
-                except:
+                except BaseException:
                     pass
-    
+
         return longversion
-    
-    
+
     def save_version(version, versionfile):
         """ save version to version_save.py
         """
-        data="#!/usr/bin/env python\n"+\
-             "# This file was created automatically\n"+\
-             "longversion='{VERSION}'"
+        data = "#!/usr/bin/env python\n" \
+            + "# This file was created automatically\n" \
+            + "longversion='{VERSION}'"
         try:
             with open(versionfile, "w") as fd:
                 fd.write(data.format(VERSION=version))
-        except:
-            warnings.warn("Could not write package version to {}.".format(versionfile))
-    
+        except BaseException:
+            msg = "Could not write package version to {}.".format(versionfile)
+            warnings.warn(msg)
+
     versionfile = join(dirname(abspath(__file__)), "_version_save.py")
-    
-    ## Determine the accurate version
+
+    # Determine the accurate version
     longversion = ""
-    
+
     # 1. git describe
     try:
         # Get the version using `git describe`
         longversion = git_describe()
-    except:
+    except BaseException:
         pass
-    
+
     # 2. previously created version file
     if longversion == "":
         # Either this is this is not a git repository or we are in the
         # wrong git repository.
         # Get the version from the previously generated `_version_save.py`
         longversion = load_version(versionfile)
-    
+
     # 3. last resort: date
     if longversion == "":
         print("Could not determine version. Reason:")
         print(traceback.format_exc())
         ctime = os.stat(__file__)[8]
         longversion = time.strftime("%Y.%m.%d-%H-%M-%S", time.gmtime(ctime))
-        print("Using creation time to determine version: {}".format(longversion))
-    
+        print("Using creation time as version: {}".format(longversion))
+
     if not hasattr(sys, 'frozen'):
         # Save the version to `_version_save.py` to allow distribution using
         # `python setup.py sdist`.
-        # This is only done if the program is not frozen (with e.g. pyinstaller),
+        # This is only done if the program is not frozen (with e.g.
+        # pyinstaller),
         if longversion != load_version(versionfile):
             save_version(longversion, versionfile)
-    
+
     # PEP 440-conform development version:
     version = ".dev".join(longversion.split("-")[:2])
Binary files /tmp/KSEqptcII_/python-multipletau-0.1.6+ds/tests/data/test_correlate.py_test_cc_m.npy and /tmp/jL4wHAUHTI/python-multipletau-0.1.7+ds/tests/data/test_correlate.py_test_cc_m.npy differ
Binary files /tmp/KSEqptcII_/python-multipletau-0.1.6+ds/tests/data/test_correlate.py_test_cc_normalize.npy and /tmp/jL4wHAUHTI/python-multipletau-0.1.7+ds/tests/data/test_correlate.py_test_cc_normalize.npy differ
Binary files /tmp/KSEqptcII_/python-multipletau-0.1.6+ds/tests/data/test_correlate.py_test_cc_simple.npy and /tmp/jL4wHAUHTI/python-multipletau-0.1.7+ds/tests/data/test_correlate.py_test_cc_simple.npy differ
diff -Nru python-multipletau-0.1.6+ds/tests/test_ac_cc.py python-multipletau-0.1.7+ds/tests/test_ac_cc.py
--- python-multipletau-0.1.6+ds/tests/test_ac_cc.py	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/tests/test_ac_cc.py	2017-04-26 14:31:13.000000000 +0200
@@ -21,38 +21,46 @@
 from test_autocorrelate import get_sample_arrays
 
 
-def test_ac_cc_simple():
+def test_ac_cc_m():
     myframe = sys._getframe()
     myname = myframe.f_code.co_name
     print("running ", myname)
     
     arrs = get_sample_arrays()
-    
-    rescc = []
-    for a in arrs:
+
+    ms = [8, 16, 32, 64, 128]
+    a = np.concatenate(arrs)
+
+    res = []    
+    for m in ms:
+        r = multipletau.autocorrelate(a=a,
+                                      m=m,
+                                      deltat=1,
+                                      normalize=False,
+                                      copy=True,
+                                      dtype=np.float_)
+        res.append(r)
+    res = np.concatenate(res)
+
+    rescc = []    
+    for m in ms:
         r = multipletau.correlate(a=a, v=a,
-                                  m=16,
+                                  m=m,
                                   deltat=1,
                                   normalize=False,
                                   copy=True,
-                                  dtype=np.float)
+                                  dtype=np.float_)
         rescc.append(r)
+        # test minimal length of array
+        _r2 = multipletau.correlate(a=a[:2*m], v=a[:2*m],
+                                    m=m,
+                                    deltat=1,
+                                    normalize=False,
+                                    copy=True,
+                                    dtype=np.float_)
     
     rescc = np.concatenate(rescc)
-
-    resac = []
-    for a in arrs:
-        r = multipletau.autocorrelate(a=a,
-                                      m=16,
-                                      deltat=1,
-                                      normalize=False,
-                                      copy=True,
-                                      dtype=np.float)
-        resac.append(r)
-    
-    resac = np.concatenate(resac)
-    
-    assert np.all(resac==rescc)
+    assert np.all(res==rescc)
 
 
 def test_ac_cc_normalize():
@@ -69,7 +77,7 @@
                                       deltat=1,
                                       normalize=True,
                                       copy=True,
-                                      dtype=np.float)
+                                      dtype=np.float_)
         res.append(r)
     
     res = np.concatenate(res)
@@ -81,7 +89,7 @@
                                   deltat=1,
                                   normalize=True,
                                   copy=True,
-                                  dtype=np.float)
+                                  dtype=np.float_)
         rescc.append(r)
     
     rescc = np.concatenate(rescc)
@@ -89,46 +97,38 @@
     assert np.all(res==rescc)
 
 
-def test_ac_cc_m():
+def test_ac_cc_simple():
     myframe = sys._getframe()
     myname = myframe.f_code.co_name
     print("running ", myname)
     
     arrs = get_sample_arrays()
-
-    ms = [8, 16, 32, 64, 128]
-    a = np.concatenate(arrs)
-
-    res = []    
-    for m in ms:
-        r = multipletau.autocorrelate(a=a,
-                                      m=m,
-                                      deltat=1,
-                                      normalize=False,
-                                      copy=True,
-                                      dtype=np.float)
-        res.append(r)
-    res = np.concatenate(res)
-
-    rescc = []    
-    for m in ms:
+    
+    rescc = []
+    for a in arrs:
         r = multipletau.correlate(a=a, v=a,
-                                  m=m,
+                                  m=16,
                                   deltat=1,
                                   normalize=False,
                                   copy=True,
-                                  dtype=np.float)
+                                  dtype=np.float_)
         rescc.append(r)
-        # test minimal length of array
-        _r2 = multipletau.correlate(a=a[:2*m], v=a[:2*m],
-                                    m=m,
-                                    deltat=1,
-                                    normalize=False,
-                                    copy=True,
-                                    dtype=np.float)
     
     rescc = np.concatenate(rescc)
-    assert np.all(res==rescc)
+
+    resac = []
+    for a in arrs:
+        r = multipletau.autocorrelate(a=a,
+                                      m=16,
+                                      deltat=1,
+                                      normalize=False,
+                                      copy=True,
+                                      dtype=np.float_)
+        resac.append(r)
+    
+    resac = np.concatenate(resac)
+    
+    assert np.all(resac==rescc)
 
 
 if __name__ == "__main__":
diff -Nru python-multipletau-0.1.6+ds/tests/test_autocorrelate.py python-multipletau-0.1.7+ds/tests/test_autocorrelate.py
--- python-multipletau-0.1.6+ds/tests/test_autocorrelate.py	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/tests/test_autocorrelate.py	2017-04-26 14:31:13.000000000 +0200
@@ -41,89 +41,6 @@
     return arrs
 
 
-def test_ac_simple():
-    myframe = sys._getframe()
-    myname = myframe.f_code.co_name
-    print("running ", myname)
-    
-    arrs = get_sample_arrays()
-    
-    res = []
-    for a in arrs:
-        r = multipletau.autocorrelate(a=a,
-                                      m=16,
-                                      deltat=1,
-                                      normalize=False,
-                                      copy=True,
-                                      dtype=np.float)
-        res.append(r)
-    
-    res = np.concatenate(res)
-    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
-    ref = get_reference_data(myname, __file__)
-
-    assert np.all(res==ref)
-
-
-def test_ac_normalize():
-    myframe = sys._getframe()
-    myname = myframe.f_code.co_name
-    print("running ", myname)
-    
-    arrs = get_sample_arrays()
-    
-    res = []
-    for a in arrs:
-        r = multipletau.autocorrelate(a=a,
-                                      m=16,
-                                      deltat=1,
-                                      normalize=True,
-                                      copy=True,
-                                      dtype=np.float)
-        res.append(r)
-    
-    res = np.concatenate(res)
-    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
-    ref = get_reference_data(myname, __file__)
-
-    assert np.all(res==ref)
-
-
-def test_ac_m():
-    myframe = sys._getframe()
-    myname = myframe.f_code.co_name
-    print("running ", myname)
-    
-    arrs = get_sample_arrays()
-
-    ms = [8, 16, 32, 64, 128]
-    a = np.concatenate(arrs)
-
-    res = []    
-    for m in ms:
-        r = multipletau.autocorrelate(a=a,
-                                      m=m,
-                                      deltat=1,
-                                      normalize=False,
-                                      copy=True,
-                                      dtype=np.float)
-        res.append(r)
-
-        # test minimal length of array
-        _r2 = multipletau.autocorrelate(a=a[:2*m],
-                                        m=m,
-                                        deltat=1,
-                                        normalize=False,
-                                        copy=True,
-                                        dtype=np.float)
-    
-    res = np.concatenate(res)
-    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
-    ref = get_reference_data(myname, __file__)
-
-    assert np.all(res==ref)
-
-
 def test_ac_copy():
     myframe = sys._getframe()
     myname = myframe.f_code.co_name
@@ -138,7 +55,7 @@
                                       deltat=1,
                                       normalize=True,
                                       copy=True,
-                                      dtype=np.float)
+                                      dtype=np.float_)
         res1.append(r)
 
     res2 = []
@@ -148,7 +65,7 @@
                                       deltat=1,
                                       normalize=True,
                                       copy=False,
-                                      dtype=np.float)
+                                      dtype=np.float_)
         res2.append(r)
     
     # simple test if result is the same
@@ -160,7 +77,7 @@
     # make sure the copy function really changes something
     assert not np.all(arrs == refarrs)
 
-    
+
 def test_ac_dtype():
     myframe = sys._getframe()
     myname = myframe.f_code.co_name
@@ -175,7 +92,7 @@
                                    deltat=1,
                                    normalize=True,
                                    copy=True,
-                                   dtype=np.float)
+                                   dtype=np.float_)
 
     ri = multipletau.autocorrelate(a=a,
                                    m=16,
@@ -191,12 +108,47 @@
                                    copy=True,
                                    dtype=None)
     
-    assert ri.dtype == np.dtype(np.float), "if wrong dtype, dtype should default to np.float"
-    assert ri2.dtype == np.dtype(np.float), "if wrong dtype, dtype should default to np.float"
+    assert ri.dtype == np.dtype(np.float_), "if wrong dtype, dtype should default to np.float_"
+    assert ri2.dtype == np.dtype(np.float_), "if wrong dtype, dtype should default to np.float_"
     assert np.all(rf == ri), "result should be the same, because input us the same"
     assert np.all(rf == ri2), "result should be the same, because input us the same"
 
 
+def test_ac_m():
+    myframe = sys._getframe()
+    myname = myframe.f_code.co_name
+    print("running ", myname)
+    
+    arrs = get_sample_arrays()
+
+    ms = [8, 16, 32, 64, 128]
+    a = np.concatenate(arrs)
+
+    res = []    
+    for m in ms:
+        r = multipletau.autocorrelate(a=a,
+                                      m=m,
+                                      deltat=1,
+                                      normalize=False,
+                                      copy=True,
+                                      dtype=np.float_)
+        res.append(r)
+
+        # test minimal length of array
+        _r2 = multipletau.autocorrelate(a=a[:2*m],
+                                        m=m,
+                                        deltat=1,
+                                        normalize=False,
+                                        copy=True,
+                                        dtype=np.float_)
+    
+    res = np.concatenate(res)
+    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
+    ref = get_reference_data(myname, __file__)
+
+    assert np.allclose(res, ref, atol=0, rtol=1e-15)
+
+
 def test_ac_m_wrong():
     myframe = sys._getframe()
     myname = myframe.f_code.co_name
@@ -210,41 +162,89 @@
                                    deltat=1,
                                    normalize=True,
                                    copy=True,
-                                   dtype=np.float)
+                                   dtype=np.float_)
 
     r2 = multipletau.autocorrelate(a=a,
                                    m=15,
                                    deltat=1,
                                    normalize=True,
                                    copy=True,
-                                   dtype=np.float)
+                                   dtype=np.float_)
 
     r3 = multipletau.autocorrelate(a=a,
                                    m=15.5,
                                    deltat=1,
                                    normalize=True,
                                    copy=True,
-                                   dtype=np.float)
+                                   dtype=np.float_)
 
     r4 = multipletau.autocorrelate(a=a,
                                    m=14.5,
                                    deltat=1,
                                    normalize=True,
                                    copy=True,
-                                   dtype=np.float)
+                                   dtype=np.float_)
 
     r5 = multipletau.autocorrelate(a=a,
                                    m=16.,
                                    deltat=1,
                                    normalize=True,
                                    copy=True,
-                                   dtype=np.float)
+                                   dtype=np.float_)
     assert np.all(r1==r2)
     assert np.all(r1==r3)
     assert np.all(r1==r4)
     assert np.all(r1==r5)
 
 
+def test_ac_normalize():
+    myframe = sys._getframe()
+    myname = myframe.f_code.co_name
+    print("running ", myname)
+    
+    arrs = get_sample_arrays()
+    
+    res = []
+    for a in arrs:
+        r = multipletau.autocorrelate(a=a,
+                                      m=16,
+                                      deltat=1,
+                                      normalize=True,
+                                      copy=True,
+                                      dtype=np.float_)
+        res.append(r)
+    
+    res = np.concatenate(res)
+    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
+    ref = get_reference_data(myname, __file__)
+
+    assert np.allclose(res, ref, atol=0, rtol=1e-14)
+
+
+def test_ac_simple():
+    myframe = sys._getframe()
+    myname = myframe.f_code.co_name
+    print("running ", myname)
+    
+    arrs = get_sample_arrays()
+    
+    res = []
+    for a in arrs:
+        r = multipletau.autocorrelate(a=a,
+                                      m=16,
+                                      deltat=1,
+                                      normalize=False,
+                                      copy=True,
+                                      dtype=np.float_)
+        res.append(r)
+    
+    res = np.concatenate(res)
+    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
+    ref = get_reference_data(myname, __file__)
+
+    assert np.allclose(res, ref, atol=0, rtol=1e-15)
+
+
 if __name__ == "__main__":
     # Run all tests
     loc = locals()
diff -Nru python-multipletau-0.1.6+ds/tests/test_basic.py python-multipletau-0.1.7+ds/tests/test_basic.py
--- python-multipletau-0.1.6+ds/tests/test_basic.py	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/tests/test_basic.py	2017-04-26 14:31:13.000000000 +0200
@@ -13,7 +13,7 @@
 
 
 def test_ac():
-    ist = autocorrelate(range(42), m=2, dtype=np.dtype(float))
+    ist = autocorrelate(range(42), m=2, dtype=np.float_)
     soll = np.array([[  0.00000000e+00,   2.38210000e+04],
                      [  1.00000000e+00,   2.29600000e+04],
                      [  2.00000000e+00,   2.21000000e+04],
@@ -23,7 +23,7 @@
 
 
 def test_cc():
-    ist = correlate(range(42), range(1,43), m=2, dtype=np.dtype(float))
+    ist = correlate(range(42), range(1,43), m=2, dtype=np.float_)
     soll = np.array([[  0.00000000e+00,   2.46820000e+04],
                      [  1.00000000e+00,   2.38210000e+04],
                      [  2.00000000e+00,   2.29600000e+04],
diff -Nru python-multipletau-0.1.6+ds/tests/test_correlate.py python-multipletau-0.1.7+ds/tests/test_correlate.py
--- python-multipletau-0.1.6+ds/tests/test_correlate.py	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/tests/test_correlate.py	2017-04-26 14:31:13.000000000 +0200
@@ -12,6 +12,7 @@
 import warnings
 import zipfile
 
+
 # Add parent directory to beginning of path variable
 DIR = dirname(abspath(__file__))
 sys.path = [split(DIR)[0]] + sys.path
@@ -20,10 +21,11 @@
 
 from test_autocorrelate import get_reference_data
 
+
 def get_sample_arrays_cplx():
     a = [-4.3,   1,    9, -99.2, 13]
     b = [9921, 281, 23.5,   5.3, 77]
-    c = [  12,   0,    2,   1.3, 33]
+    c = [  12,   0,  2.1,   1.3, 33]
     d = [  32,  .1,   -2,   6.3, 88]
     l = [  33,  92,   47,    54, 99]
     r = [   0,   1,   12,     4,  0] 
@@ -39,107 +41,6 @@
     return arrs
 
 
-def test_cc_simple():
-    myframe = sys._getframe()
-    myname = myframe.f_code.co_name
-    print("running ", myname)
-    
-    arrs = get_sample_arrays_cplx()
-    
-    res = []
-    for a in arrs:
-        r = multipletau.correlate(a=a,
-                                  v=a,
-                                  m=16,
-                                  deltat=1,
-                                  normalize=False,
-                                  copy=True,
-                                  dtype=np.complex)
-        res.append(r)
-    res = np.concatenate(res)
-
-    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
-    ref = get_reference_data(myname, __file__)
-
-    assert np.all(res==ref)
-
-    # also check result of autocorrelate
-    res2 = []
-    for a in arrs:
-        r = multipletau.autocorrelate(a=a,
-                                      m=16,
-                                      deltat=1,
-                                      normalize=False,
-                                      copy=True,
-                                      dtype=np.complex)
-        res2.append(r)
-    res2 = np.concatenate(res2)
-
-    assert np.all(res==res2)
-
-
-def test_cc_normalize():
-    myframe = sys._getframe()
-    myname = myframe.f_code.co_name
-    print("running ", myname)
-    
-    arrs = get_sample_arrays_cplx()
-    
-    res = []
-    for a in arrs:
-        r = multipletau.correlate(a=a.real,
-                                  v=a.imag,
-                                  m=16,
-                                  deltat=1,
-                                  normalize=True,
-                                  copy=True,
-                                  dtype=np.float)
-        res.append(r)
-    
-    res = np.concatenate(res)
-    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
-    ref = get_reference_data(myname, __file__)
-
-    assert np.all(res==ref)
-
-
-def test_cc_m():
-    myframe = sys._getframe()
-    myname = myframe.f_code.co_name
-    print("running ", myname)
-    
-    arrs = get_sample_arrays_cplx()
-
-    ms = [4, 8, 10, 16, 20, 64, 128]
-    a = np.concatenate(arrs)
-
-    res = []    
-    for m in ms:
-        r = multipletau.correlate(a=a,
-                                  v=a,
-                                  m=m,
-                                  deltat=1,
-                                  normalize=False,
-                                  copy=True,
-                                  dtype=np.complex)
-        res.append(r)
-
-        # test minimal length of array
-        _r2 = multipletau.correlate(a=a[:2*m],
-                                    v=a[:2*m],
-                                    m=m,
-                                    deltat=1,
-                                    normalize=False,
-                                    copy=True,
-                                    dtype=np.complex)
-    
-    res = np.concatenate(res)
-    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
-    ref = get_reference_data(myname, __file__)
-
-    assert np.all(res==ref)
-
-
 def test_cc_copy():
     myframe = sys._getframe()
     myname = myframe.f_code.co_name
@@ -176,7 +77,7 @@
     # make sure the copy function really changes something
     assert not np.all(arrs == refarrs)
 
-    
+
 def test_cc_dtype():
     myframe = sys._getframe()
     myname = myframe.f_code.co_name
@@ -192,7 +93,7 @@
                                deltat=1,
                                normalize=True,
                                copy=True,
-                               dtype=np.float)
+                               dtype=np.float_)
 
     ri = multipletau.correlate(a=a,
                                v=a,
@@ -200,18 +101,18 @@
                                deltat=1,
                                normalize=True,
                                copy=True,
-                               dtype=np.uint)
+                               dtype=np.int_)
 
-    ri2 = multipletau.correlate(a=np.array(a, dtype=np.uint),
-                                v=np.array(a, dtype=np.uint),
+    ri2 = multipletau.correlate(a=np.array(a, dtype=np.int_),
+                                v=np.array(a, dtype=np.int_),
                                 m=16,
                                 deltat=1,
                                 normalize=True,
                                 copy=True,
                                 dtype=None)
     
-    assert ri.dtype == np.dtype(np.float), "if wrong dtype, dtype should default to np.float"
-    assert ri2.dtype == np.dtype(np.float), "if wrong dtype, dtype should default to np.float"
+    assert ri.dtype == np.dtype(np.float_), "if wrong dtype, dtype should default to np.float_"
+    assert ri2.dtype == np.dtype(np.float_), "if wrong dtype, dtype should default to np.float_"
     assert np.all(rf == ri), "result should be the same, because input us the same"
     assert np.all(rf == ri2), "result should be the same, because input us the same"
 
@@ -230,16 +131,53 @@
                                deltat=1,
                                normalize=True,
                                copy=True)
-    assert np.dtype(rf.dtype) == np.dtype(np.complex)
+    assert np.dtype(rf.dtype) == np.dtype(np.complex_)
 
     print("this should issue a warning of unequal input dtypes, casting to float")
     rf2 = multipletau.correlate(a=a.real,
-                               v=np.array(a.imag, dtype=np.int),
+                               v=np.array(a.imag, dtype=np.int_),
                                m=16,
                                deltat=1,
                                normalize=True,
                                copy=True)
-    assert np.dtype(rf2.dtype) == np.dtype(np.float)
+    assert np.dtype(rf2.dtype) == np.dtype(np.float_)
+
+
+def test_cc_m():
+    myframe = sys._getframe()
+    myname = myframe.f_code.co_name
+    print("running ", myname)
+    
+    arrs = get_sample_arrays_cplx()
+
+    ms = [4, 8, 10, 16, 20, 64, 128]
+    a = np.concatenate(arrs)
+
+    res = []    
+    for m in ms:
+        r = multipletau.correlate(a=a,
+                                  v=a,
+                                  m=m,
+                                  deltat=1,
+                                  normalize=False,
+                                  copy=True,
+                                  dtype=np.complex_)
+        res.append(r)
+
+        # test minimal length of array
+        _r2 = multipletau.correlate(a=a[:2*m],
+                                    v=a[:2*m],
+                                    m=m,
+                                    deltat=1,
+                                    normalize=False,
+                                    copy=True,
+                                    dtype=np.complex_)
+    
+    res = np.concatenate(res)
+    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
+    ref = get_reference_data(myname, __file__)
+
+    assert np.allclose(res, ref, atol=0, rtol=1e-15)
 
 
 def test_cc_m_wrong():
@@ -291,6 +229,69 @@
     assert np.all(r1==r5)
 
 
+def test_cc_normalize():
+    myframe = sys._getframe()
+    myname = myframe.f_code.co_name
+    print("running ", myname)
+    
+    arrs = get_sample_arrays_cplx()
+    
+    res = []
+    for a in arrs:
+        r = multipletau.correlate(a=a.real,
+                                  v=a.imag,
+                                  m=16,
+                                  deltat=1,
+                                  normalize=True,
+                                  copy=True,
+                                  dtype=np.float_)
+        res.append(r)
+    res = np.concatenate(res)
+    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
+    ref = get_reference_data(myname, __file__)
+
+    assert np.allclose(res, ref, atol=0, rtol=1e-14)
+
+
+def test_cc_simple():
+    myframe = sys._getframe()
+    myname = myframe.f_code.co_name
+    print("running ", myname)
+    
+    arrs = get_sample_arrays_cplx()
+    
+    res = []
+    for a in arrs:
+        r = multipletau.correlate(a=a,
+                                  v=a,
+                                  m=16,
+                                  deltat=1,
+                                  normalize=False,
+                                  copy=True,
+                                  dtype=np.complex_)
+        res.append(r)
+    res = np.concatenate(res)
+
+    #np.save(os.path.dirname(__file__)+"/data/"+os.path.basename(__file__)+"_"+myname+".npy", res)
+    ref = get_reference_data(myname, __file__)
+
+    assert np.allclose(res, ref, atol=0, rtol=1e-15)
+
+    # also check result of autocorrelate
+    res2 = []
+    for a in arrs:
+        r = multipletau.autocorrelate(a=a,
+                                      m=16,
+                                      deltat=1,
+                                      normalize=False,
+                                      copy=True,
+                                      dtype=np.complex_)
+        res2.append(r)
+    res2 = np.concatenate(res2)
+
+    assert np.allclose(res, res2, atol=0, rtol=1e-15)
+
+
 if __name__ == "__main__":
     # Run all tests
     loc = locals()
diff -Nru python-multipletau-0.1.6+ds/tests/test_ref_numpy.py python-multipletau-0.1.7+ds/tests/test_ref_numpy.py
--- python-multipletau-0.1.6+ds/tests/test_ref_numpy.py	2016-07-11 20:51:49.000000000 +0200
+++ python-multipletau-0.1.7+ds/tests/test_ref_numpy.py	2017-04-26 14:31:13.000000000 +0200
@@ -14,7 +14,6 @@
 from test_correlate import get_sample_arrays_cplx
 
 
-
 def test_corresponds_ac():
     myframe = sys._getframe()
     myname = myframe.f_code.co_name
@@ -27,19 +26,74 @@
                                        m=m,
                                        copy=True,
                                        normalize=True,
-                                       dtype=np.float128)
+                                       dtype=np.float_)
 
     reslin = multipletau.correlate_numpy(a=1*a,
                                          v=1*a,
                                          copy=True,
                                          normalize=True,
-                                         dtype=np.float128)
+                                         dtype=np.float_)
 
     idx = np.array(restau[:,0].real, dtype=int)[:m]
 
     assert np.allclose(reslin[idx, 1], restau[:m,1])
 
 
+def test_corresponds_ac_first_loop():
+    """
+    numpy correlation:
+    G_m = sum_i(a_i*a_{i+m})
+    
+    multipletau correlation 2nd order:
+    b_j = (a_{2i} + a_{2i+1} / 2)
+    G_m = sum_j(b_j*b_{j+1})
+        = 1/4*sum_i(a_{2i}   * a_{2i+m}   +
+                    a_{2i}   * a_{2i+m+1} +
+                    a_{2i+1} * a_{2i+m}   +   
+                    a_{2i+1} * a_{2i+m+1}
+                    )
+    
+    The values after the first m+1 lag times in the multipletau
+    correlation differ from the normal correlation, because the
+    traces are averaged over two consecutive items, effectively
+    halving the size of the trace. The multiple-tau correlation
+    can be compared to the regular correlation by using an even
+    sized sequence (here 222) in which the elements 2i and 2i+1
+    are equal, as is done in this test.
+    """
+    myframe = sys._getframe()
+    myname = myframe.f_code.co_name
+    print("running ", myname)
+    
+    a = [ arr / np.average(arr) for arr in get_sample_arrays_cplx() ]
+    a = np.concatenate(a)[:222]
+    # two consecutive elements are the same, so the multiple-tau method
+    # corresponds to the numpy correlation for the first loop.
+    a[::2] = a[1::2]
+    
+    for m in [2,4,6,8,10,12,14,16]:
+        restau = multipletau.correlate(a=a,
+                                       v=a.imag+1j*a.real,
+                                       m=m,
+                                       copy=True,
+                                       normalize=False,
+                                       dtype=np.complex_)
+        
+        reslin = multipletau.correlate_numpy(a=a,
+                                             v=a.imag+1j*a.real,
+                                             copy=True,
+                                             normalize=False,
+                                             dtype=np.complex_)
+        
+        idtau = np.where(restau[:,0]==m+2)[0][0]
+        tau3 = restau[idtau, 1] #m+1 initial bins
+    
+        idref = np.where(reslin[:,0]==m+2)[0][0]
+        tau3ref = reslin[idref, 1]
+        
+        assert np.allclose(tau3, tau3ref)
+
+
 def test_corresponds_ac_nonormalize():
     myframe = sys._getframe()
     myname = myframe.f_code.co_name
@@ -52,13 +106,13 @@
                                        m=m,
                                        copy=True,
                                        normalize=False,
-                                       dtype=np.float128)
+                                       dtype=np.float_)
 
     reslin = multipletau.correlate_numpy(a=1*a,
                                          v=1*a,
                                          copy=True,
                                          normalize=False,
-                                         dtype=np.float128)
+                                         dtype=np.float_)
 
     idx = np.array(restau[:,0].real, dtype=int)[:m+1]
 
@@ -78,13 +132,13 @@
                                    m=m,
                                    copy=True,
                                    normalize=True,
-                                   dtype=np.complex256)
+                                   dtype=np.complex_)
 
     reslin = multipletau.correlate_numpy(a=a,
                                          v=a.imag+1j*a.real,
                                          copy=True,
                                          normalize=True,
-                                         dtype=np.complex256)
+                                         dtype=np.complex_)
 
     idx = np.array(restau[:,0].real, dtype=int)[:m+1]
 
@@ -104,74 +158,19 @@
                                    m=m,
                                    copy=True,
                                    normalize=False,
-                                   dtype=np.complex256)
+                                   dtype=np.complex_)
 
     reslin = multipletau.correlate_numpy(a=a,
                                          v=a.imag+1j*a.real,
                                          copy=True,
                                          normalize=False,
-                                         dtype=np.complex256)
+                                         dtype=np.complex_)
 
     idx = np.array(restau[:,0].real, dtype=int)[:m+1]
 
     assert np.allclose(reslin[idx, 1], restau[:m+1,1])
     
 
-def test_corresponds_ac_first_loop():
-    """
-    numpy correlation:
-    G_m = sum_i(a_i*a_{i+m})
-    
-    multipletau correlation 2nd order:
-    b_j = (a_{2i} + a_{2i+1} / 2)
-    G_m = sum_j(b_j*b_{j+1})
-        = 1/4*sum_i(a_{2i}   * a_{2i+m}   +
-                    a_{2i}   * a_{2i+m+1} +
-                    a_{2i+1} * a_{2i+m}   +   
-                    a_{2i+1} * a_{2i+m+1}
-                    )
-    
-    The values after the first m+1 lag times in the multipletau
-    correlation differ from the normal correlation, because the
-    traces are averaged over two consecutive items, effectively
-    halving the size of the trace. The multiple-tau correlation
-    can be compared to the regular correlation by using an even
-    sized sequence (here 222) in which the elements 2i and 2i+1
-    are equal, as is done in this test.
-    """
-    myframe = sys._getframe()
-    myname = myframe.f_code.co_name
-    print("running ", myname)
-    
-    a = [ arr / np.average(arr) for arr in get_sample_arrays_cplx() ]
-    a = np.concatenate(a)[:222]
-    # two consecutive elements are the same, so the multiple-tau method
-    # corresponds to the numpy correlation for the first loop.
-    a[::2] = a[1::2]
-    
-    for m in [2,4,6,8,10,12,14,16]:
-        restau = multipletau.correlate(a=a,
-                                       v=a.imag+1j*a.real,
-                                       m=m,
-                                       copy=True,
-                                       normalize=False,
-                                       dtype=np.complex256)
-        
-        reslin = multipletau.correlate_numpy(a=a,
-                                             v=a.imag+1j*a.real,
-                                             copy=True,
-                                             normalize=False,
-                                             dtype=np.complex256)
-        
-        idtau = np.where(restau[:,0]==m+2)[0][0]
-        tau3 = restau[idtau, 1] #m+1 initial bins
-    
-        idref = np.where(reslin[:,0]==m+2)[0][0]
-        tau3ref = reslin[idref, 1]
-        
-        assert np.allclose(tau3, tau3ref)
-
-
 if __name__ == "__main__":
     # Run all tests
     loc = locals()

--- End Message ---
--- Begin Message ---
Alex Mestiashvili:
> Package: release.debian.org
> Severity: normal
> User: release.debian.org@packages.debian.org
> Usertags: unblock
> X-Debbugs-Cc: mailatgoogl@gmail.com,
> debian-med-packaging@lists.alioth.debian.org
> 
> Please unblock package python-multipletau
> 
> There are changes fixing broken tests on i386 - bug #860624 and syntax
> cleanup (pep8) which shouldn't affect the package.
> 
> unblock python-multipletau/0.1.7+ds-1
> 
> [...]

Unblocked, thanks.

~Niels

--- End Message ---

Reply to: