[Date Prev][Date Next] [Thread Prev][Thread Next] [Date Index] [Thread Index]

Bug#686295: unblock: qt4-x11/4:4.8.2+dfsg-2



Package: release.debian.org
Severity: normal
User: release.debian.org@packages.debian.org
Usertags: unblock

Please unblock package qt4-x11

Hi RT! The most important thing in this request is to allow the fix of RC bug
#685132 to enter testing. It is the removal of two RFCs files that were
included in the source code, and they account for exactly 90% of the debdiff
attached, so don't be scared by it's size ;)

Befor continuing, please take into account that the debdiff includes two
changelogs, as we added Fix-JIT-crash-on-x86-64-avoid-32-bit-branch-offset-o.patch
in an attempt to fix some crashes, but it turned out to be more problematic,
so we later did another upload to remove it.

Also in the important changes is using xz for all the packaging. This has been
done by request of the people who are preparing the installation CDs, as Qt is
included in CD 1.

We added a small patch from upstream, Fix-cursor-truncate-to-include-line-position.patch,
needed for calligra and katepart (and so many other apps).

Other bulky change in the debdiff are symbols updates for some archs, which
should be totally safe, as they are just updates of the same version already
in testing.

Finally this upload should solve the mess done by the binNMU for multiarch
users in testing.

Kinds regards, Lisandro.

unblock qt4-x11/4:4.8.2+dfsg-2

-- System Information:
Debian Release: wheezy/sid
  APT prefers unstable
  APT policy: (990, 'unstable'), (500, 'testing'), (101, 'experimental')
Architecture: amd64 (x86_64)
Foreign Architectures: mips
i386

Kernel: Linux 3.2.21+edid (SMP w/2 CPU cores)
Locale: LANG=es_AR.UTF-8, LC_CTYPE=es_AR.UTF-8 (charmap=UTF-8)
Shell: /bin/sh linked to /bin/bash
diff -Nru qt4-x11-4.8.2/debian/changelog qt4-x11-4.8.2+dfsg/debian/changelog
--- qt4-x11-4.8.2/debian/changelog	2012-08-01 22:31:27.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/debian/changelog	2012-08-27 17:54:43.000000000 -0300
@@ -1,3 +1,30 @@
+qt4-x11 (4:4.8.2+dfsg-2) unstable; urgency=low
+
+  * Remove Fix-JIT-crash-on-x86-64-avoid-32-bit-branch-offset-o.patch. It seems
+    that causes crashes in an hardware-dependant fashion (Closes: #685524).
+
+ -- Lisandro Damián Nicanor Pérez Meyer <lisandro@debian.org>  Mon, 27 Aug 2012 17:54:41 -0300
+
+qt4-x11 (4:4.8.2+dfsg-1) unstable; urgency=low
+
+  * Add myself to Uploaders.
+  * Remove non-free zlib's RFCs (Closes: #685132):
+    - Add prune-nonfree to debian/rules to remove them.
+    - Add a note on README.source of what we are removing from the original
+      tarball.
+  * Add upstream patch Fix-cursor-truncate-to-include-line-position.patch
+    needed for Calligra and katepart.
+  * Add upstream patch
+    Fix-JIT-crash-on-x86-64-avoid-32-bit-branch-offset-o.patch to fix JIT crash
+    on x86-64 (avoid 32-bit branch offset overflow) (Closes: #684985).
+  * Compress all packages using xz compression. It helps the D-I team to fit
+    stuff in the first CD.
+  * Close multiarch bugs created by the latest binNMU
+    (Closes: #684556, #684678, #684688, #684867).
+  * Update symbols files.
+
+ -- Lisandro Damián Nicanor Pérez Meyer <lisandro@debian.org>  Sat, 18 Aug 2012 16:36:22 -0300
+
 qt4-x11 (4:4.8.2-2) unstable; urgency=low
 
   * Team upload.
diff -Nru qt4-x11-4.8.2/debian/control qt4-x11-4.8.2+dfsg/debian/control
--- qt4-x11-4.8.2/debian/control	2012-07-20 12:16:41.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/debian/control	2012-08-18 16:03:29.000000000 -0300
@@ -5,7 +5,8 @@
 Uploaders: Fathi Boudra <fabo@debian.org>,
            Modestas Vainius <modax@debian.org>,
            Sune Vuorela <debian@pusling.com>,
-           Pino Toscano <pino@debian.org>
+           Pino Toscano <pino@debian.org>,
+           Lisandro Damián Nicanor Pérez Meyer <lisandro@debian.org>
 Build-Depends: debhelper (>= 9),
                dpkg-dev (>= 1.16.1),
                firebird-dev [amd64 armel i386 ia64 kfreebsd-amd64 kfreebsd-i386 mips mipsel powerpc s390 sh4 sparc],
diff -Nru qt4-x11-4.8.2/debian/libqtcore4.symbols qt4-x11-4.8.2+dfsg/debian/libqtcore4.symbols
--- qt4-x11-4.8.2/debian/libqtcore4.symbols	2012-07-31 14:24:39.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/debian/libqtcore4.symbols	2012-08-18 21:49:00.000000000 -0300
@@ -1,4 +1,4 @@
-# SymbolsHelper-Confirmed: 4:4.8.2 armel armhf hurd-i386 i386 ia64 kfreebsd-amd64 kfreebsd-i386 mips mipsel powerpc s390 s390x sparc
+# SymbolsHelper-Confirmed: 4:4.8.2 amd64 armel armhf hurd-i386 i386 ia64 kfreebsd-amd64 kfreebsd-i386 mips mipsel powerpc s390 s390x sparc
 libQtCLucene.so.4 libqtcore4 #MINVER#
 * Build-Depends-Package: libqt4-dev
  _ZN12QCLuceneHits2idEi@Base 4:4.5.3
@@ -440,52 +440,52 @@
  _ZNK21QCLuceneMultiSearcher13searcherIndexEi@Base 4:4.5.3
  _ZNK21QCLuceneMultiSearcher6maxDocEv@Base 4:4.5.3
  _ZNK21QCLuceneMultiSearcher6subDocEi@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5index18CompoundFileReader9FileEntryENS1_4util7Compare7QstringESaISt4pairIKS0_S5_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5index18CompoundFileReader9FileEntryENS1_4util7Compare7QstringESaISt4pairIKS0_S5_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5store11FSDirectoryENS1_4util7Compare7QstringESaISt4pairIKS0_S4_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5store11FSDirectoryENS1_4util7Compare7QstringESaISt4pairIKS0_S4_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5store7RAMFileENS1_4util7Compare7QstringESaISt4pairIKS0_S4_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5store7RAMFileENS1_4util7Compare7QstringESaISt4pairIKS0_S4_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPvN6lucene4util7Compare7QstringESaISt4pairIKS0_S1_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPvN6lucene4util7Compare7QstringESaISt4pairIKS0_S1_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPFvPN6lucene5index11IndexReaderEPvES4_NS2_20CloseCallbackCompareESaISt4pairIKS6_S4_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPFvPN6lucene5index11IndexReaderEPvES4_NS2_20CloseCallbackCompareESaISt4pairIKS6_S4_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKciN6lucene4util7Compare4CharESaISt4pairIKS1_iEEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKciN6lucene4util7Compare4CharESaISt4pairIKS1_iEEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene5index13SegmentReader4NormENS2_4util7Compare5TCharESaISt4pairIKS1_S6_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene5index13SegmentReader4NormENS2_4util7Compare5TCharESaISt4pairIKS1_S6_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene5index9FieldInfoENS2_4util7Compare5TCharESaISt4pairIKS1_S5_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene5index9FieldInfoENS2_4util7Compare5TCharESaISt4pairIKS1_S5_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene8analysis8AnalyzerENS2_4util7Compare5TCharESaISt4pairIKS1_S5_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene8analysis8AnalyzerENS2_4util7Compare5TCharESaISt4pairIKS1_S5_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPhN6lucene4util7Compare5TCharESaISt4pairIKS1_S2_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPhN6lucene4util7Compare5TCharESaISt4pairIKS1_S2_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwiN6lucene4util7Compare5TCharESaISt4pairIKS1_iEEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwiN6lucene4util7Compare5TCharESaISt4pairIKS1_iEEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search14FieldCacheImpl25fieldcacheCacheReaderTypeENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search14FieldCacheImpl25fieldcacheCacheReaderTypeENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search19FieldSortedHitQueue23hitqueueCacheReaderTypeENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search19FieldSortedHitQueue23hitqueueCacheReaderTypeENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search21AbstractCachingFilter12BitSetHolderENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search21AbstractCachingFilter12BitSetHolderENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5index18CompoundFileReader9FileEntryENS1_4util7Compare7QstringESaISt4pairIKS0_S5_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5index18CompoundFileReader9FileEntryENS1_4util7Compare7QstringESaISt4pairIKS0_S5_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5store11FSDirectoryENS1_4util7Compare7QstringESaISt4pairIKS0_S4_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5store11FSDirectoryENS1_4util7Compare7QstringESaISt4pairIKS0_S4_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5store7RAMFileENS1_4util7Compare7QstringESaISt4pairIKS0_S4_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPN6lucene5store7RAMFileENS1_4util7Compare7QstringESaISt4pairIKS0_S4_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPvN6lucene4util7Compare7QstringESaISt4pairIKS0_S1_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapI7QStringPvN6lucene4util7Compare7QstringESaISt4pairIKS0_S1_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPFvPN6lucene5index11IndexReaderEPvES4_NS2_20CloseCallbackCompareESaISt4pairIKS6_S4_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPFvPN6lucene5index11IndexReaderEPvES4_NS2_20CloseCallbackCompareESaISt4pairIKS6_S4_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKciN6lucene4util7Compare4CharESaISt4pairIKS1_iEEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKciN6lucene4util7Compare4CharESaISt4pairIKS1_iEEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene5index13SegmentReader4NormENS2_4util7Compare5TCharESaISt4pairIKS1_S6_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene5index13SegmentReader4NormENS2_4util7Compare5TCharESaISt4pairIKS1_S6_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene5index9FieldInfoENS2_4util7Compare5TCharESaISt4pairIKS1_S5_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene5index9FieldInfoENS2_4util7Compare5TCharESaISt4pairIKS1_S5_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene8analysis8AnalyzerENS2_4util7Compare5TCharESaISt4pairIKS1_S5_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPN6lucene8analysis8AnalyzerENS2_4util7Compare5TCharESaISt4pairIKS1_S5_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPhN6lucene4util7Compare5TCharESaISt4pairIKS1_S2_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwPhN6lucene4util7Compare5TCharESaISt4pairIKS1_S2_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwiN6lucene4util7Compare5TCharESaISt4pairIKS1_iEEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPKwiN6lucene4util7Compare5TCharESaISt4pairIKS1_iEEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search14FieldCacheImpl25fieldcacheCacheReaderTypeENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search14FieldCacheImpl25fieldcacheCacheReaderTypeENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search19FieldSortedHitQueue23hitqueueCacheReaderTypeENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search19FieldSortedHitQueue23hitqueueCacheReaderTypeENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search21AbstractCachingFilter12BitSetHolderENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index11IndexReaderEPNS0_6search21AbstractCachingFilter12BitSetHolderENS0_4util7Compare4VoidIS2_EESaISt4pairIKS3_S7_EEED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index4TermEPNS1_14DocumentWriter7PostingENS2_7CompareESaISt4pairIKS3_S6_EEED1Ev@Base 4:4.7.4
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene5index4TermEPNS1_14DocumentWriter7PostingENS2_7CompareESaISt4pairIKS3_S6_EEED2Ev@Base 4:4.7.4
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene6search14FieldCacheImpl9FileEntryEPNS1_14FieldCacheAutoENS3_7CompareESaISt4pairIKS4_S6_EEED1Ev@Base 4:4.7.4
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene6search14FieldCacheImpl9FileEntryEPNS1_14FieldCacheAutoENS3_7CompareESaISt4pairIKS4_S6_EEED2Ev@Base 4:4.7.4
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene6search14FieldCacheImpl9FileEntryEPNS1_18ScoreDocComparatorENS3_7CompareESaISt4pairIKS4_S6_EEED1Ev@Base 4:4.7.4
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapIPN6lucene6search14FieldCacheImpl9FileEntryEPNS1_18ScoreDocComparatorENS3_7CompareESaISt4pairIKS4_S6_EEED2Ev@Base 4:4.7.4
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapImPN6lucene5index15SegmentTermEnumENS0_4util22CLuceneThreadIdCompareESaISt4pairIKmS3_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapImPN6lucene5index15SegmentTermEnumENS0_4util22CLuceneThreadIdCompareESaISt4pairIKmS3_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapImPN6lucene5index17TermVectorsReaderENS0_4util22CLuceneThreadIdCompareESaISt4pairIKmS3_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapImPN6lucene5index17TermVectorsReaderENS0_4util22CLuceneThreadIdCompareESaISt4pairIKmS3_EEED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setI7QStringN6lucene4util7Compare7QstringESaIS0_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setI7QStringN6lucene4util7Compare7QstringESaIS0_EED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPFvbEN6lucene4util7Compare4VoidIS0_EESaIS1_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPFvbEN6lucene4util7Compare4VoidIS0_EESaIS1_EED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPKwN6lucene4util7Compare5TCharESaIS1_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPKwN6lucene4util7Compare5TCharESaIS1_EED2Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPwN6lucene4util7Compare5TCharESaIS0_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPwN6lucene4util7Compare5TCharESaIS0_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapImPN6lucene5index15SegmentTermEnumENS0_4util22CLuceneThreadIdCompareESaISt4pairIKmS3_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapImPN6lucene5index15SegmentTermEnumENS0_4util22CLuceneThreadIdCompareESaISt4pairIKmS3_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapImPN6lucene5index17TermVectorsReaderENS0_4util22CLuceneThreadIdCompareESaISt4pairIKmS3_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3mapImPN6lucene5index17TermVectorsReaderENS0_4util22CLuceneThreadIdCompareESaISt4pairIKmS3_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setI7QStringN6lucene4util7Compare7QstringESaIS0_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setI7QStringN6lucene4util7Compare7QstringESaIS0_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPFvbEN6lucene4util7Compare4VoidIS0_EESaIS1_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPFvbEN6lucene4util7Compare4VoidIS0_EESaIS1_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPKwN6lucene4util7Compare5TCharESaIS1_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPKwN6lucene4util7Compare5TCharESaIS1_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPwN6lucene4util7Compare5TCharESaIS0_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt3setIPwN6lucene4util7Compare5TCharESaIS0_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt4listIPN6lucene5index18CompoundFileWriter15WriterFileEntryESaIS4_EED1Ev@Base 4:4.7.4
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt4listIPN6lucene5index18CompoundFileWriter15WriterFileEntryESaIS4_EED2Ev@Base 4:4.7.4
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt4listIPN6lucene6search6ScorerESaIS3_EED1Ev@Base 4:4.7.4
@@ -494,38 +494,38 @@
  (optional=templinst|arch=amd64 hurd-i386 i386 kfreebsd-amd64 kfreebsd-i386)_ZNSt6vectorIPKwSaIS1_EED1Ev@Base 4:4.8.1
  (optional=templinst|arch=amd64 hurd-i386 i386 kfreebsd-amd64 kfreebsd-i386)_ZNSt6vectorIPKwSaIS1_EED2Ev@Base 4:4.8.1
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene11queryParser10QueryTokenESaIS3_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS3_S5_EERKS3_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene11queryParser10QueryTokenESaIS3_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene11queryParser10QueryTokenESaIS3_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene11queryParser10QueryTokenESaIS3_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene11queryParser10QueryTokenESaIS3_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index11IndexReaderESaIS3_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS3_S5_EERKS3_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index11IndexReaderESaIS3_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index11IndexReaderESaIS3_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index11IndexReaderESaIS3_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index11IndexReaderESaIS3_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index13SegmentReaderESaIS3_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS3_S5_EERKS3_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index13SegmentReaderESaIS3_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index13SegmentReaderESaIS3_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index13SegmentReaderESaIS3_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index13SegmentReaderESaIS3_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter6TVTermESaIS4_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS4_S6_EERKS4_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter6TVTermESaIS4_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter6TVTermESaIS4_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter6TVTermESaIS4_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter6TVTermESaIS4_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter7TVFieldESaIS4_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS4_S6_EERKS4_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter7TVFieldESaIS4_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter7TVFieldESaIS4_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter7TVFieldESaIS4_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index17TermVectorsWriter7TVFieldESaIS4_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index4TermESaIS3_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS3_S5_EERKS3_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index4TermESaIS3_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index4TermESaIS3_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index4TermESaIS3_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index4TermESaIS3_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index9FieldInfoESaIS3_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS3_S5_EERKS3_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index9FieldInfoESaIS3_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index9FieldInfoESaIS3_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index9FieldInfoESaIS3_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene5index9FieldInfoESaIS3_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search11ExplanationESaIS3_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS3_S5_EERKS3_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search11ExplanationESaIS3_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search11ExplanationESaIS3_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search11ExplanationESaIS3_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search11ExplanationESaIS3_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search13BooleanClauseESaIS3_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS3_S5_EERKS3_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search13BooleanClauseESaIS3_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search13BooleanClauseESaIS3_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search13BooleanClauseESaIS3_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search13BooleanClauseESaIS3_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6HitDocESaIS3_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS3_S5_EERKS3_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6HitDocESaIS3_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6HitDocESaIS3_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6HitDocESaIS3_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6HitDocESaIS3_EED2Ev@Base 4:4.8.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6WeightESaIS3_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS3_S5_EERKS3_@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6WeightESaIS3_EED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6WeightESaIS3_EED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6WeightESaIS3_EED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt6vectorIPN6lucene6search6WeightESaIS3_EED2Ev@Base 4:4.8.2
  (optional=templinst)_ZNSt6vectorIPhSaIS0_EE13_M_insert_auxEN9__gnu_cxx17__normal_iteratorIPS0_S2_EERKS0_@Base 4:4.5.3
  (optional=templinst|arch=amd64 hurd-i386 i386 ia64 kfreebsd-amd64 kfreebsd-i386 mips mipsel powerpc s390 s390x sparc)_ZNSt6vectorIPhSaIS0_EED1Ev@Base 4:4.8.1
  (optional=templinst|arch=amd64 hurd-i386 i386 ia64 kfreebsd-amd64 kfreebsd-i386 mips mipsel powerpc s390 s390x sparc)_ZNSt6vectorIPhSaIS0_EED2Ev@Base 4:4.8.1
@@ -611,8 +611,8 @@
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt8_Rb_treeImSt4pairIKmPN6lucene5index17TermVectorsReaderEESt10_Select1stIS6_ENS2_4util22CLuceneThreadIdCompareESaIS6_EE10_M_insert_EPKSt18_Rb_tree_node_baseSF_RKS6_@Base 4:4.5.3
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt8_Rb_treeImSt4pairIKmPN6lucene5index17TermVectorsReaderEESt10_Select1stIS6_ENS2_4util22CLuceneThreadIdCompareESaIS6_EE16_M_insert_uniqueERKS6_@Base 4:4.7.2
  (optional=templinst|arch=!amd64 !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt8_Rb_treeImSt4pairIKmPN6lucene5index17TermVectorsReaderEESt10_Select1stIS6_ENS2_4util22CLuceneThreadIdCompareESaIS6_EE8_M_eraseEPSt13_Rb_tree_nodeIS6_E@Base 4:4.5.3
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt8multimapImPN6lucene4util15ThreadLocalBaseESt4lessImESaISt4pairIKmS3_EEED1Ev@Base 4:4.8.2
- (optional=templinst|arch=!armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt8multimapImPN6lucene4util15ThreadLocalBaseESt4lessImESaISt4pairIKmS3_EEED2Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt8multimapImPN6lucene4util15ThreadLocalBaseESt4lessImESaISt4pairIKmS3_EEED1Ev@Base 4:4.8.2
+ (optional=templinst|arch=!amd64 !armel !armhf !hurd-i386 !i386 !kfreebsd-amd64 !kfreebsd-i386)_ZNSt8multimapImPN6lucene4util15ThreadLocalBaseESt4lessImESaISt4pairIKmS3_EEED2Ev@Base 4:4.8.2
  (optional=templinst)_ZStplIcSt11char_traitsIcESaIcEESbIT_T0_T1_EPKS3_RKS6_@Base 4:4.5.3
  _ZTI12QCLuceneHits@Base 4:4.5.3
  _ZTI12QCLuceneSort@Base 4:4.5.3
diff -Nru qt4-x11-4.8.2/debian/patches/Fix-cursor-truncate-to-include-line-position.patch qt4-x11-4.8.2+dfsg/debian/patches/Fix-cursor-truncate-to-include-line-position.patch
--- qt4-x11-4.8.2/debian/patches/Fix-cursor-truncate-to-include-line-position.patch	1969-12-31 21:00:00.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/debian/patches/Fix-cursor-truncate-to-include-line-position.patch	2012-08-18 16:03:29.000000000 -0300
@@ -0,0 +1,32 @@
+Description: Fix cursor truncate to include line position
+ Since we could have moved the line position (QTextLine::setPosition),
+ the truncating position should be adjusted with that.
+
+Origin: commit ca89c49fa2c5cbb3945897046f33eed9f7da846c
+Author: Jiang Jiang <jiang.jiang@nokia.com>
+Reviewed-by: Eskil Abrahamsen Blomfeldt <eskil.abrahamsen-blomfeldt@nokia.com>
+Applied-Upstream: yes
+Forwarded: not-needed
+
+---
+ src/gui/text/qtextlayout.cpp |    4 ++--
+ 1 file changed, 2 insertions(+), 2 deletions(-)
+
+diff --git a/src/gui/text/qtextlayout.cpp b/src/gui/text/qtextlayout.cpp
+index 16f7150..52f2793 100644
+--- a/src/gui/text/qtextlayout.cpp
++++ b/src/gui/text/qtextlayout.cpp
+@@ -2616,8 +2616,8 @@ qreal QTextLine::cursorToX(int *cursorPos, Edge edge) const
+         x += eng->offsetInLigature(si, pos, end, glyph_pos);
+     }
+ 
+-    if (eng->option.wrapMode() != QTextOption::NoWrap && x > line.width)
+-        x = line.width;
++    if (eng->option.wrapMode() != QTextOption::NoWrap && x > line.x + line.width)
++        x = line.x + line.width;
+ 
+     *cursorPos = pos + si->position;
+     return x.toReal();
+-- 
+1.7.10.4
+
diff -Nru qt4-x11-4.8.2/debian/patches/series qt4-x11-4.8.2+dfsg/debian/patches/series
--- qt4-x11-4.8.2/debian/patches/series	2012-07-30 21:17:23.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/debian/patches/series	2012-08-21 14:18:28.000000000 -0300
@@ -3,6 +3,7 @@
 QTBUG-14724_close_orphaned_file_descriptors_after_printing.patch
 QTBUG-21900_Buttons_in_Qt_applications_not_clickable_when_run_under_gnome-shell.patch
 QElfParser-fix-type-of-sh_size.patch
+Fix-cursor-truncate-to-include-line-position.patch
 
 # qt-copy patches
 0195-compositing-properties.diff
diff -Nru qt4-x11-4.8.2/debian/README.source qt4-x11-4.8.2+dfsg/debian/README.source
--- qt4-x11-4.8.2/debian/README.source	2012-07-20 12:16:41.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/debian/README.source	2012-08-18 16:03:29.000000000 -0300
@@ -1,3 +1,9 @@
+DFSG-repackaging
+----------------
+
+The source code of Qt is repackaged to get rid of the non-DFSG compliant
+RFCs that are bundled with zlib's source code inside src/3rdparty/zlib/doc/.
+
 Patches to the original source code
 -----------------------------------
 
diff -Nru qt4-x11-4.8.2/debian/rules qt4-x11-4.8.2+dfsg/debian/rules
--- qt4-x11-4.8.2/debian/rules	2012-07-20 12:16:41.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/debian/rules	2012-08-18 16:35:58.000000000 -0300
@@ -21,8 +21,6 @@
 pkgs_dbgbin := libqt4-dev-bin $(filter-out %-dbg lib% $(pkgs_dbg),$(shell dh_listpackages))
 # Library package list for override_dh_makeshlibs, excludes libqt4-phonon
 pkgs_lib := $(filter-out %-dev %-dbg libqt4-phonon libqt4-dev-bin,$(filter lib%,$(shell dh_listpackages)))
-# Packages to compress as XZ
-pkgs_compress_xz := qt4-doc-html
 # Upstream changelog
 upstream_changes := $(wildcard changes-*)
 # Current debian version (e.g.: 4:4.5.2-1)
@@ -369,7 +367,10 @@
 	dh_shlibdeps --remaining-packages
 
 override_dh_builddeb:
-	dh_builddeb $(addprefix -p,$(pkgs_compress_xz)) -- -Zxz
-	dh_builddeb --remaining-packages
+	dh_builddeb -- -Zxz
+
+prune-nonfree:
+	# Delete zlib's RFCs.
+	find \( -name rfc195* \) -print -delete
 
 .PHONY: override_dh_auto_test
diff -Nru qt4-x11-4.8.2/src/3rdparty/zlib/doc/rfc1950.txt qt4-x11-4.8.2+dfsg/src/3rdparty/zlib/doc/rfc1950.txt
--- qt4-x11-4.8.2/src/3rdparty/zlib/doc/rfc1950.txt	2012-04-26 16:46:22.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/src/3rdparty/zlib/doc/rfc1950.txt	1969-12-31 21:00:00.000000000 -0300
@@ -1,619 +0,0 @@
-
-
-
-
-
-
-Network Working Group                                         P. Deutsch
-Request for Comments: 1950                           Aladdin Enterprises
-Category: Informational                                      J-L. Gailly
-                                                                Info-ZIP
-                                                                May 1996
-
-
-         ZLIB Compressed Data Format Specification version 3.3
-
-Status of This Memo
-
-   This memo provides information for the Internet community.  This memo
-   does not specify an Internet standard of any kind.  Distribution of
-   this memo is unlimited.
-
-IESG Note:
-
-   The IESG takes no position on the validity of any Intellectual
-   Property Rights statements contained in this document.
-
-Notices
-
-   Copyright (c) 1996 L. Peter Deutsch and Jean-Loup Gailly
-
-   Permission is granted to copy and distribute this document for any
-   purpose and without charge, including translations into other
-   languages and incorporation into compilations, provided that the
-   copyright notice and this notice are preserved, and that any
-   substantive changes or deletions from the original are clearly
-   marked.
-
-   A pointer to the latest version of this and related documentation in
-   HTML format can be found at the URL
-   <ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
-
-Abstract
-
-   This specification defines a lossless compressed data format.  The
-   data can be produced or consumed, even for an arbitrarily long
-   sequentially presented input data stream, using only an a priori
-   bounded amount of intermediate storage.  The format presently uses
-   the DEFLATE compression method but can be easily extended to use
-   other compression methods.  It can be implemented readily in a manner
-   not covered by patents.  This specification also defines the ADLER-32
-   checksum (an extension and improvement of the Fletcher checksum),
-   used for detection of data corruption, and provides an algorithm for
-   computing it.
-
-
-
-
-Deutsch & Gailly             Informational                      [Page 1]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-Table of Contents
-
-   1. Introduction ................................................... 2
-      1.1. Purpose ................................................... 2
-      1.2. Intended audience ......................................... 3
-      1.3. Scope ..................................................... 3
-      1.4. Compliance ................................................ 3
-      1.5.  Definitions of terms and conventions used ................ 3
-      1.6. Changes from previous versions ............................ 3
-   2. Detailed specification ......................................... 3
-      2.1. Overall conventions ....................................... 3
-      2.2. Data format ............................................... 4
-      2.3. Compliance ................................................ 7
-   3. References ..................................................... 7
-   4. Source code .................................................... 8
-   5. Security Considerations ........................................ 8
-   6. Acknowledgements ............................................... 8
-   7. Authors' Addresses ............................................. 8
-   8. Appendix: Rationale ............................................ 9
-   9. Appendix: Sample code ..........................................10
-
-1. Introduction
-
-   1.1. Purpose
-
-      The purpose of this specification is to define a lossless
-      compressed data format that:
-
-          * Is independent of CPU type, operating system, file system,
-            and character set, and hence can be used for interchange;
-
-          * Can be produced or consumed, even for an arbitrarily long
-            sequentially presented input data stream, using only an a
-            priori bounded amount of intermediate storage, and hence can
-            be used in data communications or similar structures such as
-            Unix filters;
-
-          * Can use a number of different compression methods;
-
-          * Can be implemented readily in a manner not covered by
-            patents, and hence can be practiced freely.
-
-      The data format defined by this specification does not attempt to
-      allow random access to compressed data.
-
-
-
-
-
-
-
-Deutsch & Gailly             Informational                      [Page 2]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-   1.2. Intended audience
-
-      This specification is intended for use by implementors of software
-      to compress data into zlib format and/or decompress data from zlib
-      format.
-
-      The text of the specification assumes a basic background in
-      programming at the level of bits and other primitive data
-      representations.
-
-   1.3. Scope
-
-      The specification specifies a compressed data format that can be
-      used for in-memory compression of a sequence of arbitrary bytes.
-
-   1.4. Compliance
-
-      Unless otherwise indicated below, a compliant decompressor must be
-      able to accept and decompress any data set that conforms to all
-      the specifications presented here; a compliant compressor must
-      produce data sets that conform to all the specifications presented
-      here.
-
-   1.5.  Definitions of terms and conventions used
-
-      byte: 8 bits stored or transmitted as a unit (same as an octet).
-      (For this specification, a byte is exactly 8 bits, even on
-      machines which store a character on a number of bits different
-      from 8.) See below, for the numbering of bits within a byte.
-
-   1.6. Changes from previous versions
-
-      Version 3.1 was the first public release of this specification.
-      In version 3.2, some terminology was changed and the Adler-32
-      sample code was rewritten for clarity.  In version 3.3, the
-      support for a preset dictionary was introduced, and the
-      specification was converted to RFC style.
-
-2. Detailed specification
-
-   2.1. Overall conventions
-
-      In the diagrams below, a box like this:
-
-         +---+
-         |   | <-- the vertical bars might be missing
-         +---+
-
-
-
-
-Deutsch & Gailly             Informational                      [Page 3]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-      represents one byte; a box like this:
-
-         +==============+
-         |              |
-         +==============+
-
-      represents a variable number of bytes.
-
-      Bytes stored within a computer do not have a "bit order", since
-      they are always treated as a unit.  However, a byte considered as
-      an integer between 0 and 255 does have a most- and least-
-      significant bit, and since we write numbers with the most-
-      significant digit on the left, we also write bytes with the most-
-      significant bit on the left.  In the diagrams below, we number the
-      bits of a byte so that bit 0 is the least-significant bit, i.e.,
-      the bits are numbered:
-
-         +--------+
-         |76543210|
-         +--------+
-
-      Within a computer, a number may occupy multiple bytes.  All
-      multi-byte numbers in the format described here are stored with
-      the MOST-significant byte first (at the lower memory address).
-      For example, the decimal number 520 is stored as:
-
-             0     1
-         +--------+--------+
-         |00000010|00001000|
-         +--------+--------+
-          ^        ^
-          |        |
-          |        + less significant byte = 8
-          + more significant byte = 2 x 256
-
-   2.2. Data format
-
-      A zlib stream has the following structure:
-
-           0   1
-         +---+---+
-         |CMF|FLG|   (more-->)
-         +---+---+
-
-
-
-
-
-
-
-
-Deutsch & Gailly             Informational                      [Page 4]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-      (if FLG.FDICT set)
-
-           0   1   2   3
-         +---+---+---+---+
-         |     DICTID    |   (more-->)
-         +---+---+---+---+
-
-         +=====================+---+---+---+---+
-         |...compressed data...|    ADLER32    |
-         +=====================+---+---+---+---+
-
-      Any data which may appear after ADLER32 are not part of the zlib
-      stream.
-
-      CMF (Compression Method and flags)
-         This byte is divided into a 4-bit compression method and a 4-
-         bit information field depending on the compression method.
-
-            bits 0 to 3  CM     Compression method
-            bits 4 to 7  CINFO  Compression info
-
-      CM (Compression method)
-         This identifies the compression method used in the file. CM = 8
-         denotes the "deflate" compression method with a window size up
-         to 32K.  This is the method used by gzip and PNG (see
-         references [1] and [2] in Chapter 3, below, for the reference
-         documents).  CM = 15 is reserved.  It might be used in a future
-         version of this specification to indicate the presence of an
-         extra field before the compressed data.
-
-      CINFO (Compression info)
-         For CM = 8, CINFO is the base-2 logarithm of the LZ77 window
-         size, minus eight (CINFO=7 indicates a 32K window size). Values
-         of CINFO above 7 are not allowed in this version of the
-         specification.  CINFO is not defined in this specification for
-         CM not equal to 8.
-
-      FLG (FLaGs)
-         This flag byte is divided as follows:
-
-            bits 0 to 4  FCHECK  (check bits for CMF and FLG)
-            bit  5       FDICT   (preset dictionary)
-            bits 6 to 7  FLEVEL  (compression level)
-
-         The FCHECK value must be such that CMF and FLG, when viewed as
-         a 16-bit unsigned integer stored in MSB order (CMF*256 + FLG),
-         is a multiple of 31.
-
-
-
-
-Deutsch & Gailly             Informational                      [Page 5]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-      FDICT (Preset dictionary)
-         If FDICT is set, a DICT dictionary identifier is present
-         immediately after the FLG byte. The dictionary is a sequence of
-         bytes which are initially fed to the compressor without
-         producing any compressed output. DICT is the Adler-32 checksum
-         of this sequence of bytes (see the definition of ADLER32
-         below).  The decompressor can use this identifier to determine
-         which dictionary has been used by the compressor.
-
-      FLEVEL (Compression level)
-         These flags are available for use by specific compression
-         methods.  The "deflate" method (CM = 8) sets these flags as
-         follows:
-
-            0 - compressor used fastest algorithm
-            1 - compressor used fast algorithm
-            2 - compressor used default algorithm
-            3 - compressor used maximum compression, slowest algorithm
-
-         The information in FLEVEL is not needed for decompression; it
-         is there to indicate if recompression might be worthwhile.
-
-      compressed data
-         For compression method 8, the compressed data is stored in the
-         deflate compressed data format as described in the document
-         "DEFLATE Compressed Data Format Specification" by L. Peter
-         Deutsch. (See reference [3] in Chapter 3, below)
-
-         Other compressed data formats are not specified in this version
-         of the zlib specification.
-
-      ADLER32 (Adler-32 checksum)
-         This contains a checksum value of the uncompressed data
-         (excluding any dictionary data) computed according to Adler-32
-         algorithm. This algorithm is a 32-bit extension and improvement
-         of the Fletcher algorithm, used in the ITU-T X.224 / ISO 8073
-         standard. See references [4] and [5] in Chapter 3, below)
-
-         Adler-32 is composed of two sums accumulated per byte: s1 is
-         the sum of all bytes, s2 is the sum of all s1 values. Both sums
-         are done modulo 65521. s1 is initialized to 1, s2 to zero.  The
-         Adler-32 checksum is stored as s2*65536 + s1 in most-
-         significant-byte first (network) order.
-
-
-
-
-
-
-
-
-Deutsch & Gailly             Informational                      [Page 6]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-   2.3. Compliance
-
-      A compliant compressor must produce streams with correct CMF, FLG
-      and ADLER32, but need not support preset dictionaries.  When the
-      zlib data format is used as part of another standard data format,
-      the compressor may use only preset dictionaries that are specified
-      by this other data format.  If this other format does not use the
-      preset dictionary feature, the compressor must not set the FDICT
-      flag.
-
-      A compliant decompressor must check CMF, FLG, and ADLER32, and
-      provide an error indication if any of these have incorrect values.
-      A compliant decompressor must give an error indication if CM is
-      not one of the values defined in this specification (only the
-      value 8 is permitted in this version), since another value could
-      indicate the presence of new features that would cause subsequent
-      data to be interpreted incorrectly.  A compliant decompressor must
-      give an error indication if FDICT is set and DICTID is not the
-      identifier of a known preset dictionary.  A decompressor may
-      ignore FLEVEL and still be compliant.  When the zlib data format
-      is being used as a part of another standard format, a compliant
-      decompressor must support all the preset dictionaries specified by
-      the other format. When the other format does not use the preset
-      dictionary feature, a compliant decompressor must reject any
-      stream in which the FDICT flag is set.
-
-3. References
-
-   [1] Deutsch, L.P.,"GZIP Compressed Data Format Specification",
-       available in ftp://ftp.uu.net/pub/archiving/zip/doc/
-
-   [2] Thomas Boutell, "PNG (Portable Network Graphics) specification",
-       available in ftp://ftp.uu.net/graphics/png/documents/
-
-   [3] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
-       available in ftp://ftp.uu.net/pub/archiving/zip/doc/
-
-   [4] Fletcher, J. G., "An Arithmetic Checksum for Serial
-       Transmissions," IEEE Transactions on Communications, Vol. COM-30,
-       No. 1, January 1982, pp. 247-252.
-
-   [5] ITU-T Recommendation X.224, Annex D, "Checksum Algorithms,"
-       November, 1993, pp. 144, 145. (Available from
-       gopher://info.itu.ch). ITU-T X.244 is also the same as ISO 8073.
-
-
-
-
-
-
-
-Deutsch & Gailly             Informational                      [Page 7]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-4. Source code
-
-   Source code for a C language implementation of a "zlib" compliant
-   library is available at ftp://ftp.uu.net/pub/archiving/zip/zlib/.
-
-5. Security Considerations
-
-   A decoder that fails to check the ADLER32 checksum value may be
-   subject to undetected data corruption.
-
-6. Acknowledgements
-
-   Trademarks cited in this document are the property of their
-   respective owners.
-
-   Jean-Loup Gailly and Mark Adler designed the zlib format and wrote
-   the related software described in this specification.  Glenn
-   Randers-Pehrson converted this document to RFC and HTML format.
-
-7. Authors' Addresses
-
-   L. Peter Deutsch
-   Aladdin Enterprises
-   203 Santa Margarita Ave.
-   Menlo Park, CA 94025
-
-   Phone: (415) 322-0103 (AM only)
-   FAX:   (415) 322-1734
-   EMail: <ghost@aladdin.com>
-
-
-   Jean-Loup Gailly
-
-   EMail: <gzip@prep.ai.mit.edu>
-
-   Questions about the technical content of this specification can be
-   sent by email to
-
-   Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
-   Mark Adler <madler@alumni.caltech.edu>
-
-   Editorial comments on this specification can be sent by email to
-
-   L. Peter Deutsch <ghost@aladdin.com> and
-   Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
-
-
-
-
-
-
-Deutsch & Gailly             Informational                      [Page 8]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-8. Appendix: Rationale
-
-   8.1. Preset dictionaries
-
-      A preset dictionary is specially useful to compress short input
-      sequences. The compressor can take advantage of the dictionary
-      context to encode the input in a more compact manner. The
-      decompressor can be initialized with the appropriate context by
-      virtually decompressing a compressed version of the dictionary
-      without producing any output. However for certain compression
-      algorithms such as the deflate algorithm this operation can be
-      achieved without actually performing any decompression.
-
-      The compressor and the decompressor must use exactly the same
-      dictionary. The dictionary may be fixed or may be chosen among a
-      certain number of predefined dictionaries, according to the kind
-      of input data. The decompressor can determine which dictionary has
-      been chosen by the compressor by checking the dictionary
-      identifier. This document does not specify the contents of
-      predefined dictionaries, since the optimal dictionaries are
-      application specific. Standard data formats using this feature of
-      the zlib specification must precisely define the allowed
-      dictionaries.
-
-   8.2. The Adler-32 algorithm
-
-      The Adler-32 algorithm is much faster than the CRC32 algorithm yet
-      still provides an extremely low probability of undetected errors.
-
-      The modulo on unsigned long accumulators can be delayed for 5552
-      bytes, so the modulo operation time is negligible.  If the bytes
-      are a, b, c, the second sum is 3a + 2b + c + 3, and so is position
-      and order sensitive, unlike the first sum, which is just a
-      checksum.  That 65521 is prime is important to avoid a possible
-      large class of two-byte errors that leave the check unchanged.
-      (The Fletcher checksum uses 255, which is not prime and which also
-      makes the Fletcher check insensitive to single byte changes 0 <->
-      255.)
-
-      The sum s1 is initialized to 1 instead of zero to make the length
-      of the sequence part of s2, so that the length does not have to be
-      checked separately. (Any sequence of zeroes has a Fletcher
-      checksum of zero.)
-
-
-
-
-
-
-
-
-Deutsch & Gailly             Informational                      [Page 9]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-9. Appendix: Sample code
-
-   The following C code computes the Adler-32 checksum of a data buffer.
-   It is written for clarity, not for speed.  The sample code is in the
-   ANSI C programming language. Non C users may find it easier to read
-   with these hints:
-
-      &      Bitwise AND operator.
-      >>     Bitwise right shift operator. When applied to an
-             unsigned quantity, as here, right shift inserts zero bit(s)
-             at the left.
-      <<     Bitwise left shift operator. Left shift inserts zero
-             bit(s) at the right.
-      ++     "n++" increments the variable n.
-      %      modulo operator: a % b is the remainder of a divided by b.
-
-      #define BASE 65521 /* largest prime smaller than 65536 */
-
-      /*
-         Update a running Adler-32 checksum with the bytes buf[0..len-1]
-       and return the updated checksum. The Adler-32 checksum should be
-       initialized to 1.
-
-       Usage example:
-
-         unsigned long adler = 1L;
-
-         while (read_buffer(buffer, length) != EOF) {
-           adler = update_adler32(adler, buffer, length);
-         }
-         if (adler != original_adler) error();
-      */
-      unsigned long update_adler32(unsigned long adler,
-         unsigned char *buf, int len)
-      {
-        unsigned long s1 = adler & 0xffff;
-        unsigned long s2 = (adler >> 16) & 0xffff;
-        int n;
-
-        for (n = 0; n < len; n++) {
-          s1 = (s1 + buf[n]) % BASE;
-          s2 = (s2 + s1)     % BASE;
-        }
-        return (s2 << 16) + s1;
-      }
-
-      /* Return the adler32 of the bytes buf[0..len-1] */
-
-
-
-
-Deutsch & Gailly             Informational                     [Page 10]
-
-RFC 1950       ZLIB Compressed Data Format Specification        May 1996
-
-
-      unsigned long adler32(unsigned char *buf, int len)
-      {
-        return update_adler32(1L, buf, len);
-      }
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Deutsch & Gailly             Informational                     [Page 11]
-
diff -Nru qt4-x11-4.8.2/src/3rdparty/zlib/doc/rfc1951.txt qt4-x11-4.8.2+dfsg/src/3rdparty/zlib/doc/rfc1951.txt
--- qt4-x11-4.8.2/src/3rdparty/zlib/doc/rfc1951.txt	2012-04-26 16:46:22.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/src/3rdparty/zlib/doc/rfc1951.txt	1969-12-31 21:00:00.000000000 -0300
@@ -1,955 +0,0 @@
-
-
-
-
-
-
-Network Working Group                                         P. Deutsch
-Request for Comments: 1951                           Aladdin Enterprises
-Category: Informational                                         May 1996
-
-
-        DEFLATE Compressed Data Format Specification version 1.3
-
-Status of This Memo
-
-   This memo provides information for the Internet community.  This memo
-   does not specify an Internet standard of any kind.  Distribution of
-   this memo is unlimited.
-
-IESG Note:
-
-   The IESG takes no position on the validity of any Intellectual
-   Property Rights statements contained in this document.
-
-Notices
-
-   Copyright (c) 1996 L. Peter Deutsch
-
-   Permission is granted to copy and distribute this document for any
-   purpose and without charge, including translations into other
-   languages and incorporation into compilations, provided that the
-   copyright notice and this notice are preserved, and that any
-   substantive changes or deletions from the original are clearly
-   marked.
-
-   A pointer to the latest version of this and related documentation in
-   HTML format can be found at the URL
-   <ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
-
-Abstract
-
-   This specification defines a lossless compressed data format that
-   compresses data using a combination of the LZ77 algorithm and Huffman
-   coding, with efficiency comparable to the best currently available
-   general-purpose compression methods.  The data can be produced or
-   consumed, even for an arbitrarily long sequentially presented input
-   data stream, using only an a priori bounded amount of intermediate
-   storage.  The format can be implemented readily in a manner not
-   covered by patents.
-
-
-
-
-
-
-
-
-Deutsch                      Informational                      [Page 1]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-Table of Contents
-
-   1. Introduction ................................................... 2
-      1.1. Purpose ................................................... 2
-      1.2. Intended audience ......................................... 3
-      1.3. Scope ..................................................... 3
-      1.4. Compliance ................................................ 3
-      1.5.  Definitions of terms and conventions used ................ 3
-      1.6. Changes from previous versions ............................ 4
-   2. Compressed representation overview ............................. 4
-   3. Detailed specification ......................................... 5
-      3.1. Overall conventions ....................................... 5
-          3.1.1. Packing into bytes .................................. 5
-      3.2. Compressed block format ................................... 6
-          3.2.1. Synopsis of prefix and Huffman coding ............... 6
-          3.2.2. Use of Huffman coding in the "deflate" format ....... 7
-          3.2.3. Details of block format ............................. 9
-          3.2.4. Non-compressed blocks (BTYPE=00) ................... 11
-          3.2.5. Compressed blocks (length and distance codes) ...... 11
-          3.2.6. Compression with fixed Huffman codes (BTYPE=01) .... 12
-          3.2.7. Compression with dynamic Huffman codes (BTYPE=10) .. 13
-      3.3. Compliance ............................................... 14
-   4. Compression algorithm details ................................. 14
-   5. References .................................................... 16
-   6. Security Considerations ....................................... 16
-   7. Source code ................................................... 16
-   8. Acknowledgements .............................................. 16
-   9. Author's Address .............................................. 17
-
-1. Introduction
-
-   1.1. Purpose
-
-      The purpose of this specification is to define a lossless
-      compressed data format that:
-          * Is independent of CPU type, operating system, file system,
-            and character set, and hence can be used for interchange;
-          * Can be produced or consumed, even for an arbitrarily long
-            sequentially presented input data stream, using only an a
-            priori bounded amount of intermediate storage, and hence
-            can be used in data communications or similar structures
-            such as Unix filters;
-          * Compresses data with efficiency comparable to the best
-            currently available general-purpose compression methods,
-            and in particular considerably better than the "compress"
-            program;
-          * Can be implemented readily in a manner not covered by
-            patents, and hence can be practiced freely;
-
-
-
-Deutsch                      Informational                      [Page 2]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-          * Is compatible with the file format produced by the current
-            widely used gzip utility, in that conforming decompressors
-            will be able to read data produced by the existing gzip
-            compressor.
-
-      The data format defined by this specification does not attempt to:
-
-          * Allow random access to compressed data;
-          * Compress specialized data (e.g., raster graphics) as well
-            as the best currently available specialized algorithms.
-
-      A simple counting argument shows that no lossless compression
-      algorithm can compress every possible input data set.  For the
-      format defined here, the worst case expansion is 5 bytes per 32K-
-      byte block, i.e., a size increase of 0.015% for large data sets.
-      English text usually compresses by a factor of 2.5 to 3;
-      executable files usually compress somewhat less; graphical data
-      such as raster images may compress much more.
-
-   1.2. Intended audience
-
-      This specification is intended for use by implementors of software
-      to compress data into "deflate" format and/or decompress data from
-      "deflate" format.
-
-      The text of the specification assumes a basic background in
-      programming at the level of bits and other primitive data
-      representations.  Familiarity with the technique of Huffman coding
-      is helpful but not required.
-
-   1.3. Scope
-
-      The specification specifies a method for representing a sequence
-      of bytes as a (usually shorter) sequence of bits, and a method for
-      packing the latter bit sequence into bytes.
-
-   1.4. Compliance
-
-      Unless otherwise indicated below, a compliant decompressor must be
-      able to accept and decompress any data set that conforms to all
-      the specifications presented here; a compliant compressor must
-      produce data sets that conform to all the specifications presented
-      here.
-
-   1.5.  Definitions of terms and conventions used
-
-      Byte: 8 bits stored or transmitted as a unit (same as an octet).
-      For this specification, a byte is exactly 8 bits, even on machines
-
-
-
-Deutsch                      Informational                      [Page 3]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-      which store a character on a number of bits different from eight.
-      See below, for the numbering of bits within a byte.
-
-      String: a sequence of arbitrary bytes.
-
-   1.6. Changes from previous versions
-
-      There have been no technical changes to the deflate format since
-      version 1.1 of this specification.  In version 1.2, some
-      terminology was changed.  Version 1.3 is a conversion of the
-      specification to RFC style.
-
-2. Compressed representation overview
-
-   A compressed data set consists of a series of blocks, corresponding
-   to successive blocks of input data.  The block sizes are arbitrary,
-   except that non-compressible blocks are limited to 65,535 bytes.
-
-   Each block is compressed using a combination of the LZ77 algorithm
-   and Huffman coding. The Huffman trees for each block are independent
-   of those for previous or subsequent blocks; the LZ77 algorithm may
-   use a reference to a duplicated string occurring in a previous block,
-   up to 32K input bytes before.
-
-   Each block consists of two parts: a pair of Huffman code trees that
-   describe the representation of the compressed data part, and a
-   compressed data part.  (The Huffman trees themselves are compressed
-   using Huffman encoding.)  The compressed data consists of a series of
-   elements of two types: literal bytes (of strings that have not been
-   detected as duplicated within the previous 32K input bytes), and
-   pointers to duplicated strings, where a pointer is represented as a
-   pair <length, backward distance>.  The representation used in the
-   "deflate" format limits distances to 32K bytes and lengths to 258
-   bytes, but does not limit the size of a block, except for
-   uncompressible blocks, which are limited as noted above.
-
-   Each type of value (literals, distances, and lengths) in the
-   compressed data is represented using a Huffman code, using one code
-   tree for literals and lengths and a separate code tree for distances.
-   The code trees for each block appear in a compact form just before
-   the compressed data for that block.
-
-
-
-
-
-
-
-
-
-
-Deutsch                      Informational                      [Page 4]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-3. Detailed specification
-
-   3.1. Overall conventions In the diagrams below, a box like this:
-
-         +---+
-         |   | <-- the vertical bars might be missing
-         +---+
-
-      represents one byte; a box like this:
-
-         +==============+
-         |              |
-         +==============+
-
-      represents a variable number of bytes.
-
-      Bytes stored within a computer do not have a "bit order", since
-      they are always treated as a unit.  However, a byte considered as
-      an integer between 0 and 255 does have a most- and least-
-      significant bit, and since we write numbers with the most-
-      significant digit on the left, we also write bytes with the most-
-      significant bit on the left.  In the diagrams below, we number the
-      bits of a byte so that bit 0 is the least-significant bit, i.e.,
-      the bits are numbered:
-
-         +--------+
-         |76543210|
-         +--------+
-
-      Within a computer, a number may occupy multiple bytes.  All
-      multi-byte numbers in the format described here are stored with
-      the least-significant byte first (at the lower memory address).
-      For example, the decimal number 520 is stored as:
-
-             0        1
-         +--------+--------+
-         |00001000|00000010|
-         +--------+--------+
-          ^        ^
-          |        |
-          |        + more significant byte = 2 x 256
-          + less significant byte = 8
-
-      3.1.1. Packing into bytes
-
-         This document does not address the issue of the order in which
-         bits of a byte are transmitted on a bit-sequential medium,
-         since the final data format described here is byte- rather than
-
-
-
-Deutsch                      Informational                      [Page 5]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-         bit-oriented.  However, we describe the compressed block format
-         in below, as a sequence of data elements of various bit
-         lengths, not a sequence of bytes.  We must therefore specify
-         how to pack these data elements into bytes to form the final
-         compressed byte sequence:
-
-             * Data elements are packed into bytes in order of
-               increasing bit number within the byte, i.e., starting
-               with the least-significant bit of the byte.
-             * Data elements other than Huffman codes are packed
-               starting with the least-significant bit of the data
-               element.
-             * Huffman codes are packed starting with the most-
-               significant bit of the code.
-
-         In other words, if one were to print out the compressed data as
-         a sequence of bytes, starting with the first byte at the
-         *right* margin and proceeding to the *left*, with the most-
-         significant bit of each byte on the left as usual, one would be
-         able to parse the result from right to left, with fixed-width
-         elements in the correct MSB-to-LSB order and Huffman codes in
-         bit-reversed order (i.e., with the first bit of the code in the
-         relative LSB position).
-
-   3.2. Compressed block format
-
-      3.2.1. Synopsis of prefix and Huffman coding
-
-         Prefix coding represents symbols from an a priori known
-         alphabet by bit sequences (codes), one code for each symbol, in
-         a manner such that different symbols may be represented by bit
-         sequences of different lengths, but a parser can always parse
-         an encoded string unambiguously symbol-by-symbol.
-
-         We define a prefix code in terms of a binary tree in which the
-         two edges descending from each non-leaf node are labeled 0 and
-         1 and in which the leaf nodes correspond one-for-one with (are
-         labeled with) the symbols of the alphabet; then the code for a
-         symbol is the sequence of 0's and 1's on the edges leading from
-         the root to the leaf labeled with that symbol.  For example:
-
-
-
-
-
-
-
-
-
-
-
-Deutsch                      Informational                      [Page 6]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-                          /\              Symbol    Code
-                         0  1             ------    ----
-                        /    \                A      00
-                       /\     B               B       1
-                      0  1                    C     011
-                     /    \                   D     010
-                    A     /\
-                         0  1
-                        /    \
-                       D      C
-
-         A parser can decode the next symbol from an encoded input
-         stream by walking down the tree from the root, at each step
-         choosing the edge corresponding to the next input bit.
-
-         Given an alphabet with known symbol frequencies, the Huffman
-         algorithm allows the construction of an optimal prefix code
-         (one which represents strings with those symbol frequencies
-         using the fewest bits of any possible prefix codes for that
-         alphabet).  Such a code is called a Huffman code.  (See
-         reference [1] in Chapter 5, references for additional
-         information on Huffman codes.)
-
-         Note that in the "deflate" format, the Huffman codes for the
-         various alphabets must not exceed certain maximum code lengths.
-         This constraint complicates the algorithm for computing code
-         lengths from symbol frequencies.  Again, see Chapter 5,
-         references for details.
-
-      3.2.2. Use of Huffman coding in the "deflate" format
-
-         The Huffman codes used for each alphabet in the "deflate"
-         format have two additional rules:
-
-             * All codes of a given bit length have lexicographically
-               consecutive values, in the same order as the symbols
-               they represent;
-
-             * Shorter codes lexicographically precede longer codes.
-
-
-
-
-
-
-
-
-
-
-
-
-Deutsch                      Informational                      [Page 7]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-         We could recode the example above to follow this rule as
-         follows, assuming that the order of the alphabet is ABCD:
-
-            Symbol  Code
-            ------  ----
-            A       10
-            B       0
-            C       110
-            D       111
-
-         I.e., 0 precedes 10 which precedes 11x, and 110 and 111 are
-         lexicographically consecutive.
-
-         Given this rule, we can define the Huffman code for an alphabet
-         just by giving the bit lengths of the codes for each symbol of
-         the alphabet in order; this is sufficient to determine the
-         actual codes.  In our example, the code is completely defined
-         by the sequence of bit lengths (2, 1, 3, 3).  The following
-         algorithm generates the codes as integers, intended to be read
-         from most- to least-significant bit.  The code lengths are
-         initially in tree[I].Len; the codes are produced in
-         tree[I].Code.
-
-         1)  Count the number of codes for each code length.  Let
-             bl_count[N] be the number of codes of length N, N >= 1.
-
-         2)  Find the numerical value of the smallest code for each
-             code length:
-
-                code = 0;
-                bl_count[0] = 0;
-                for (bits = 1; bits <= MAX_BITS; bits++) {
-                    code = (code + bl_count[bits-1]) << 1;
-                    next_code[bits] = code;
-                }
-
-         3)  Assign numerical values to all codes, using consecutive
-             values for all codes of the same length with the base
-             values determined at step 2. Codes that are never used
-             (which have a bit length of zero) must not be assigned a
-             value.
-
-                for (n = 0;  n <= max_code; n++) {
-                    len = tree[n].Len;
-                    if (len != 0) {
-                        tree[n].Code = next_code[len];
-                        next_code[len]++;
-                    }
-
-
-
-Deutsch                      Informational                      [Page 8]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-                }
-
-         Example:
-
-         Consider the alphabet ABCDEFGH, with bit lengths (3, 3, 3, 3,
-         3, 2, 4, 4).  After step 1, we have:
-
-            N      bl_count[N]
-            -      -----------
-            2      1
-            3      5
-            4      2
-
-         Step 2 computes the following next_code values:
-
-            N      next_code[N]
-            -      ------------
-            1      0
-            2      0
-            3      2
-            4      14
-
-         Step 3 produces the following code values:
-
-            Symbol Length   Code
-            ------ ------   ----
-            A       3        010
-            B       3        011
-            C       3        100
-            D       3        101
-            E       3        110
-            F       2         00
-            G       4       1110
-            H       4       1111
-
-      3.2.3. Details of block format
-
-         Each block of compressed data begins with 3 header bits
-         containing the following data:
-
-            first bit       BFINAL
-            next 2 bits     BTYPE
-
-         Note that the header bits do not necessarily begin on a byte
-         boundary, since a block does not necessarily occupy an integral
-         number of bytes.
-
-
-
-
-
-Deutsch                      Informational                      [Page 9]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-         BFINAL is set if and only if this is the last block of the data
-         set.
-
-         BTYPE specifies how the data are compressed, as follows:
-
-            00 - no compression
-            01 - compressed with fixed Huffman codes
-            10 - compressed with dynamic Huffman codes
-            11 - reserved (error)
-
-         The only difference between the two compressed cases is how the
-         Huffman codes for the literal/length and distance alphabets are
-         defined.
-
-         In all cases, the decoding algorithm for the actual data is as
-         follows:
-
-            do
-               read block header from input stream.
-               if stored with no compression
-                  skip any remaining bits in current partially
-                     processed byte
-                  read LEN and NLEN (see next section)
-                  copy LEN bytes of data to output
-               otherwise
-                  if compressed with dynamic Huffman codes
-                     read representation of code trees (see
-                        subsection below)
-                  loop (until end of block code recognized)
-                     decode literal/length value from input stream
-                     if value < 256
-                        copy value (literal byte) to output stream
-                     otherwise
-                        if value = end of block (256)
-                           break from loop
-                        otherwise (value = 257..285)
-                           decode distance from input stream
-
-                           move backwards distance bytes in the output
-                           stream, and copy length bytes from this
-                           position to the output stream.
-                  end loop
-            while not last block
-
-         Note that a duplicated string reference may refer to a string
-         in a previous block; i.e., the backward distance may cross one
-         or more block boundaries.  However a distance cannot refer past
-         the beginning of the output stream.  (An application using a
-
-
-
-Deutsch                      Informational                     [Page 10]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-         preset dictionary might discard part of the output stream; a
-         distance can refer to that part of the output stream anyway)
-         Note also that the referenced string may overlap the current
-         position; for example, if the last 2 bytes decoded have values
-         X and Y, a string reference with <length = 5, distance = 2>
-         adds X,Y,X,Y,X to the output stream.
-
-         We now specify each compression method in turn.
-
-      3.2.4. Non-compressed blocks (BTYPE=00)
-
-         Any bits of input up to the next byte boundary are ignored.
-         The rest of the block consists of the following information:
-
-              0   1   2   3   4...
-            +---+---+---+---+================================+
-            |  LEN  | NLEN  |... LEN bytes of literal data...|
-            +---+---+---+---+================================+
-
-         LEN is the number of data bytes in the block.  NLEN is the
-         one's complement of LEN.
-
-      3.2.5. Compressed blocks (length and distance codes)
-
-         As noted above, encoded data blocks in the "deflate" format
-         consist of sequences of symbols drawn from three conceptually
-         distinct alphabets: either literal bytes, from the alphabet of
-         byte values (0..255), or <length, backward distance> pairs,
-         where the length is drawn from (3..258) and the distance is
-         drawn from (1..32,768).  In fact, the literal and length
-         alphabets are merged into a single alphabet (0..285), where
-         values 0..255 represent literal bytes, the value 256 indicates
-         end-of-block, and values 257..285 represent length codes
-         (possibly in conjunction with extra bits following the symbol
-         code) as follows:
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Deutsch                      Informational                     [Page 11]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-                 Extra               Extra               Extra
-            Code Bits Length(s) Code Bits Lengths   Code Bits Length(s)
-            ---- ---- ------     ---- ---- -------   ---- ---- -------
-             257   0     3       267   1   15,16     277   4   67-82
-             258   0     4       268   1   17,18     278   4   83-98
-             259   0     5       269   2   19-22     279   4   99-114
-             260   0     6       270   2   23-26     280   4  115-130
-             261   0     7       271   2   27-30     281   5  131-162
-             262   0     8       272   2   31-34     282   5  163-194
-             263   0     9       273   3   35-42     283   5  195-226
-             264   0    10       274   3   43-50     284   5  227-257
-             265   1  11,12      275   3   51-58     285   0    258
-             266   1  13,14      276   3   59-66
-
-         The extra bits should be interpreted as a machine integer
-         stored with the most-significant bit first, e.g., bits 1110
-         represent the value 14.
-
-                  Extra           Extra               Extra
-             Code Bits Dist  Code Bits   Dist     Code Bits Distance
-             ---- ---- ----  ---- ----  ------    ---- ---- --------
-               0   0    1     10   4     33-48    20    9   1025-1536
-               1   0    2     11   4     49-64    21    9   1537-2048
-               2   0    3     12   5     65-96    22   10   2049-3072
-               3   0    4     13   5     97-128   23   10   3073-4096
-               4   1   5,6    14   6    129-192   24   11   4097-6144
-               5   1   7,8    15   6    193-256   25   11   6145-8192
-               6   2   9-12   16   7    257-384   26   12  8193-12288
-               7   2  13-16   17   7    385-512   27   12 12289-16384
-               8   3  17-24   18   8    513-768   28   13 16385-24576
-               9   3  25-32   19   8   769-1024   29   13 24577-32768
-
-      3.2.6. Compression with fixed Huffman codes (BTYPE=01)
-
-         The Huffman codes for the two alphabets are fixed, and are not
-         represented explicitly in the data.  The Huffman code lengths
-         for the literal/length alphabet are:
-
-                   Lit Value    Bits        Codes
-                   ---------    ----        -----
-                     0 - 143     8          00110000 through
-                                            10111111
-                   144 - 255     9          110010000 through
-                                            111111111
-                   256 - 279     7          0000000 through
-                                            0010111
-                   280 - 287     8          11000000 through
-                                            11000111
-
-
-
-Deutsch                      Informational                     [Page 12]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-         The code lengths are sufficient to generate the actual codes,
-         as described above; we show the codes in the table for added
-         clarity.  Literal/length values 286-287 will never actually
-         occur in the compressed data, but participate in the code
-         construction.
-
-         Distance codes 0-31 are represented by (fixed-length) 5-bit
-         codes, with possible additional bits as shown in the table
-         shown in Paragraph 3.2.5, above.  Note that distance codes 30-
-         31 will never actually occur in the compressed data.
-
-      3.2.7. Compression with dynamic Huffman codes (BTYPE=10)
-
-         The Huffman codes for the two alphabets appear in the block
-         immediately after the header bits and before the actual
-         compressed data, first the literal/length code and then the
-         distance code.  Each code is defined by a sequence of code
-         lengths, as discussed in Paragraph 3.2.2, above.  For even
-         greater compactness, the code length sequences themselves are
-         compressed using a Huffman code.  The alphabet for code lengths
-         is as follows:
-
-               0 - 15: Represent code lengths of 0 - 15
-                   16: Copy the previous code length 3 - 6 times.
-                       The next 2 bits indicate repeat length
-                             (0 = 3, ... , 3 = 6)
-                          Example:  Codes 8, 16 (+2 bits 11),
-                                    16 (+2 bits 10) will expand to
-                                    12 code lengths of 8 (1 + 6 + 5)
-                   17: Repeat a code length of 0 for 3 - 10 times.
-                       (3 bits of length)
-                   18: Repeat a code length of 0 for 11 - 138 times
-                       (7 bits of length)
-
-         A code length of 0 indicates that the corresponding symbol in
-         the literal/length or distance alphabet will not occur in the
-         block, and should not participate in the Huffman code
-         construction algorithm given earlier.  If only one distance
-         code is used, it is encoded using one bit, not zero bits; in
-         this case there is a single code length of one, with one unused
-         code.  One distance code of zero bits means that there are no
-         distance codes used at all (the data is all literals).
-
-         We can now define the format of the block:
-
-               5 Bits: HLIT, # of Literal/Length codes - 257 (257 - 286)
-               5 Bits: HDIST, # of Distance codes - 1        (1 - 32)
-               4 Bits: HCLEN, # of Code Length codes - 4     (4 - 19)
-
-
-
-Deutsch                      Informational                     [Page 13]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-               (HCLEN + 4) x 3 bits: code lengths for the code length
-                  alphabet given just above, in the order: 16, 17, 18,
-                  0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
-
-                  These code lengths are interpreted as 3-bit integers
-                  (0-7); as above, a code length of 0 means the
-                  corresponding symbol (literal/length or distance code
-                  length) is not used.
-
-               HLIT + 257 code lengths for the literal/length alphabet,
-                  encoded using the code length Huffman code
-
-               HDIST + 1 code lengths for the distance alphabet,
-                  encoded using the code length Huffman code
-
-               The actual compressed data of the block,
-                  encoded using the literal/length and distance Huffman
-                  codes
-
-               The literal/length symbol 256 (end of data),
-                  encoded using the literal/length Huffman code
-
-         The code length repeat codes can cross from HLIT + 257 to the
-         HDIST + 1 code lengths.  In other words, all code lengths form
-         a single sequence of HLIT + HDIST + 258 values.
-
-   3.3. Compliance
-
-      A compressor may limit further the ranges of values specified in
-      the previous section and still be compliant; for example, it may
-      limit the range of backward pointers to some value smaller than
-      32K.  Similarly, a compressor may limit the size of blocks so that
-      a compressible block fits in memory.
-
-      A compliant decompressor must accept the full range of possible
-      values defined in the previous section, and must accept blocks of
-      arbitrary size.
-
-4. Compression algorithm details
-
-   While it is the intent of this document to define the "deflate"
-   compressed data format without reference to any particular
-   compression algorithm, the format is related to the compressed
-   formats produced by LZ77 (Lempel-Ziv 1977, see reference [2] below);
-   since many variations of LZ77 are patented, it is strongly
-   recommended that the implementor of a compressor follow the general
-   algorithm presented here, which is known not to be patented per se.
-   The material in this section is not part of the definition of the
-
-
-
-Deutsch                      Informational                     [Page 14]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-   specification per se, and a compressor need not follow it in order to
-   be compliant.
-
-   The compressor terminates a block when it determines that starting a
-   new block with fresh trees would be useful, or when the block size
-   fills up the compressor's block buffer.
-
-   The compressor uses a chained hash table to find duplicated strings,
-   using a hash function that operates on 3-byte sequences.  At any
-   given point during compression, let XYZ be the next 3 input bytes to
-   be examined (not necessarily all different, of course).  First, the
-   compressor examines the hash chain for XYZ.  If the chain is empty,
-   the compressor simply writes out X as a literal byte and advances one
-   byte in the input.  If the hash chain is not empty, indicating that
-   the sequence XYZ (or, if we are unlucky, some other 3 bytes with the
-   same hash function value) has occurred recently, the compressor
-   compares all strings on the XYZ hash chain with the actual input data
-   sequence starting at the current point, and selects the longest
-   match.
-
-   The compressor searches the hash chains starting with the most recent
-   strings, to favor small distances and thus take advantage of the
-   Huffman encoding.  The hash chains are singly linked. There are no
-   deletions from the hash chains; the algorithm simply discards matches
-   that are too old.  To avoid a worst-case situation, very long hash
-   chains are arbitrarily truncated at a certain length, determined by a
-   run-time parameter.
-
-   To improve overall compression, the compressor optionally defers the
-   selection of matches ("lazy matching"): after a match of length N has
-   been found, the compressor searches for a longer match starting at
-   the next input byte.  If it finds a longer match, it truncates the
-   previous match to a length of one (thus producing a single literal
-   byte) and then emits the longer match.  Otherwise, it emits the
-   original match, and, as described above, advances N bytes before
-   continuing.
-
-   Run-time parameters also control this "lazy match" procedure.  If
-   compression ratio is most important, the compressor attempts a
-   complete second search regardless of the length of the first match.
-   In the normal case, if the current match is "long enough", the
-   compressor reduces the search for a longer match, thus speeding up
-   the process.  If speed is most important, the compressor inserts new
-   strings in the hash table only when no match was found, or when the
-   match is not "too long".  This degrades the compression ratio but
-   saves time since there are both fewer insertions and fewer searches.
-
-
-
-
-
-Deutsch                      Informational                     [Page 15]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-5. References
-
-   [1] Huffman, D. A., "A Method for the Construction of Minimum
-       Redundancy Codes", Proceedings of the Institute of Radio
-       Engineers, September 1952, Volume 40, Number 9, pp. 1098-1101.
-
-   [2] Ziv J., Lempel A., "A Universal Algorithm for Sequential Data
-       Compression", IEEE Transactions on Information Theory, Vol. 23,
-       No. 3, pp. 337-343.
-
-   [3] Gailly, J.-L., and Adler, M., ZLIB documentation and sources,
-       available in ftp://ftp.uu.net/pub/archiving/zip/doc/
-
-   [4] Gailly, J.-L., and Adler, M., GZIP documentation and sources,
-       available as gzip-*.tar in ftp://prep.ai.mit.edu/pub/gnu/
-
-   [5] Schwartz, E. S., and Kallick, B. "Generating a canonical prefix
-       encoding." Comm. ACM, 7,3 (Mar. 1964), pp. 166-169.
-
-   [6] Hirschberg and Lelewer, "Efficient decoding of prefix codes,"
-       Comm. ACM, 33,4, April 1990, pp. 449-459.
-
-6. Security Considerations
-
-   Any data compression method involves the reduction of redundancy in
-   the data.  Consequently, any corruption of the data is likely to have
-   severe effects and be difficult to correct.  Uncompressed text, on
-   the other hand, will probably still be readable despite the presence
-   of some corrupted bytes.
-
-   It is recommended that systems using this data format provide some
-   means of validating the integrity of the compressed data.  See
-   reference [3], for example.
-
-7. Source code
-
-   Source code for a C language implementation of a "deflate" compliant
-   compressor and decompressor is available within the zlib package at
-   ftp://ftp.uu.net/pub/archiving/zip/zlib/.
-
-8. Acknowledgements
-
-   Trademarks cited in this document are the property of their
-   respective owners.
-
-   Phil Katz designed the deflate format.  Jean-Loup Gailly and Mark
-   Adler wrote the related software described in this specification.
-   Glenn Randers-Pehrson converted this document to RFC and HTML format.
-
-
-
-Deutsch                      Informational                     [Page 16]
-
-RFC 1951      DEFLATE Compressed Data Format Specification      May 1996
-
-
-9. Author's Address
-
-   L. Peter Deutsch
-   Aladdin Enterprises
-   203 Santa Margarita Ave.
-   Menlo Park, CA 94025
-
-   Phone: (415) 322-0103 (AM only)
-   FAX:   (415) 322-1734
-   EMail: <ghost@aladdin.com>
-
-   Questions about the technical content of this specification can be
-   sent by email to:
-
-   Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
-   Mark Adler <madler@alumni.caltech.edu>
-
-   Editorial comments on this specification can be sent by email to:
-
-   L. Peter Deutsch <ghost@aladdin.com> and
-   Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-Deutsch                      Informational                     [Page 17]
-
diff -Nru qt4-x11-4.8.2/src/3rdparty/zlib/doc/rfc1952.txt qt4-x11-4.8.2+dfsg/src/3rdparty/zlib/doc/rfc1952.txt
--- qt4-x11-4.8.2/src/3rdparty/zlib/doc/rfc1952.txt	2012-04-26 16:46:22.000000000 -0300
+++ qt4-x11-4.8.2+dfsg/src/3rdparty/zlib/doc/rfc1952.txt	1969-12-31 21:00:00.000000000 -0300
@@ -1,675 +0,0 @@
-
-
-
-
-
-
-Network Working Group                                         P. Deutsch
-Request for Comments: 1952                           Aladdin Enterprises
-Category: Informational                                         May 1996
-
-
-               GZIP file format specification version 4.3
-
-Status of This Memo
-
-   This memo provides information for the Internet community.  This memo
-   does not specify an Internet standard of any kind.  Distribution of
-   this memo is unlimited.
-
-IESG Note:
-
-   The IESG takes no position on the validity of any Intellectual
-   Property Rights statements contained in this document.
-
-Notices
-
-   Copyright (c) 1996 L. Peter Deutsch
-
-   Permission is granted to copy and distribute this document for any
-   purpose and without charge, including translations into other
-   languages and incorporation into compilations, provided that the
-   copyright notice and this notice are preserved, and that any
-   substantive changes or deletions from the original are clearly
-   marked.
-
-   A pointer to the latest version of this and related documentation in
-   HTML format can be found at the URL
-   <ftp://ftp.uu.net/graphics/png/documents/zlib/zdoc-index.html>.
-
-Abstract
-
-   This specification defines a lossless compressed data format that is
-   compatible with the widely used GZIP utility.  The format includes a
-   cyclic redundancy check value for detecting data corruption.  The
-   format presently uses the DEFLATE method of compression but can be
-   easily extended to use other compression methods.  The format can be
-   implemented readily in a manner not covered by patents.
-
-
-
-
-
-
-
-
-
-
-Deutsch                      Informational                      [Page 1]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-Table of Contents
-
-   1. Introduction ................................................... 2
-      1.1. Purpose ................................................... 2
-      1.2. Intended audience ......................................... 3
-      1.3. Scope ..................................................... 3
-      1.4. Compliance ................................................ 3
-      1.5. Definitions of terms and conventions used ................. 3
-      1.6. Changes from previous versions ............................ 3
-   2. Detailed specification ......................................... 4
-      2.1. Overall conventions ....................................... 4
-      2.2. File format ............................................... 5
-      2.3. Member format ............................................. 5
-          2.3.1. Member header and trailer ........................... 6
-              2.3.1.1. Extra field ................................... 8
-              2.3.1.2. Compliance .................................... 9
-      3. References .................................................. 9
-      4. Security Considerations .................................... 10
-      5. Acknowledgements ........................................... 10
-      6. Author's Address ........................................... 10
-      7. Appendix: Jean-Loup Gailly's gzip utility .................. 11
-      8. Appendix: Sample CRC Code .................................. 11
-
-1. Introduction
-
-   1.1. Purpose
-
-      The purpose of this specification is to define a lossless
-      compressed data format that:
-
-          * Is independent of CPU type, operating system, file system,
-            and character set, and hence can be used for interchange;
-          * Can compress or decompress a data stream (as opposed to a
-            randomly accessible file) to produce another data stream,
-            using only an a priori bounded amount of intermediate
-            storage, and hence can be used in data communications or
-            similar structures such as Unix filters;
-          * Compresses data with efficiency comparable to the best
-            currently available general-purpose compression methods,
-            and in particular considerably better than the "compress"
-            program;
-          * Can be implemented readily in a manner not covered by
-            patents, and hence can be practiced freely;
-          * Is compatible with the file format produced by the current
-            widely used gzip utility, in that conforming decompressors
-            will be able to read data produced by the existing gzip
-            compressor.
-
-
-
-
-Deutsch                      Informational                      [Page 2]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-      The data format defined by this specification does not attempt to:
-
-          * Provide random access to compressed data;
-          * Compress specialized data (e.g., raster graphics) as well as
-            the best currently available specialized algorithms.
-
-   1.2. Intended audience
-
-      This specification is intended for use by implementors of software
-      to compress data into gzip format and/or decompress data from gzip
-      format.
-
-      The text of the specification assumes a basic background in
-      programming at the level of bits and other primitive data
-      representations.
-
-   1.3. Scope
-
-      The specification specifies a compression method and a file format
-      (the latter assuming only that a file can store a sequence of
-      arbitrary bytes).  It does not specify any particular interface to
-      a file system or anything about character sets or encodings
-      (except for file names and comments, which are optional).
-
-   1.4. Compliance
-
-      Unless otherwise indicated below, a compliant decompressor must be
-      able to accept and decompress any file that conforms to all the
-      specifications presented here; a compliant compressor must produce
-      files that conform to all the specifications presented here.  The
-      material in the appendices is not part of the specification per se
-      and is not relevant to compliance.
-
-   1.5. Definitions of terms and conventions used
-
-      byte: 8 bits stored or transmitted as a unit (same as an octet).
-      (For this specification, a byte is exactly 8 bits, even on
-      machines which store a character on a number of bits different
-      from 8.)  See below for the numbering of bits within a byte.
-
-   1.6. Changes from previous versions
-
-      There have been no technical changes to the gzip format since
-      version 4.1 of this specification.  In version 4.2, some
-      terminology was changed, and the sample CRC code was rewritten for
-      clarity and to eliminate the requirement for the caller to do pre-
-      and post-conditioning.  Version 4.3 is a conversion of the
-      specification to RFC style.
-
-
-
-Deutsch                      Informational                      [Page 3]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-2. Detailed specification
-
-   2.1. Overall conventions
-
-      In the diagrams below, a box like this:
-
-         +---+
-         |   | <-- the vertical bars might be missing
-         +---+
-
-      represents one byte; a box like this:
-
-         +==============+
-         |              |
-         +==============+
-
-      represents a variable number of bytes.
-
-      Bytes stored within a computer do not have a "bit order", since
-      they are always treated as a unit.  However, a byte considered as
-      an integer between 0 and 255 does have a most- and least-
-      significant bit, and since we write numbers with the most-
-      significant digit on the left, we also write bytes with the most-
-      significant bit on the left.  In the diagrams below, we number the
-      bits of a byte so that bit 0 is the least-significant bit, i.e.,
-      the bits are numbered:
-
-         +--------+
-         |76543210|
-         +--------+
-
-      This document does not address the issue of the order in which
-      bits of a byte are transmitted on a bit-sequential medium, since
-      the data format described here is byte- rather than bit-oriented.
-
-      Within a computer, a number may occupy multiple bytes.  All
-      multi-byte numbers in the format described here are stored with
-      the least-significant byte first (at the lower memory address).
-      For example, the decimal number 520 is stored as:
-
-             0        1
-         +--------+--------+
-         |00001000|00000010|
-         +--------+--------+
-          ^        ^
-          |        |
-          |        + more significant byte = 2 x 256
-          + less significant byte = 8
-
-
-
-Deutsch                      Informational                      [Page 4]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-   2.2. File format
-
-      A gzip file consists of a series of "members" (compressed data
-      sets).  The format of each member is specified in the following
-      section.  The members simply appear one after another in the file,
-      with no additional information before, between, or after them.
-
-   2.3. Member format
-
-      Each member has the following structure:
-
-         +---+---+---+---+---+---+---+---+---+---+
-         |ID1|ID2|CM |FLG|     MTIME     |XFL|OS | (more-->)
-         +---+---+---+---+---+---+---+---+---+---+
-
-      (if FLG.FEXTRA set)
-
-         +---+---+=================================+
-         | XLEN  |...XLEN bytes of "extra field"...| (more-->)
-         +---+---+=================================+
-
-      (if FLG.FNAME set)
-
-         +=========================================+
-         |...original file name, zero-terminated...| (more-->)
-         +=========================================+
-
-      (if FLG.FCOMMENT set)
-
-         +===================================+
-         |...file comment, zero-terminated...| (more-->)
-         +===================================+
-
-      (if FLG.FHCRC set)
-
-         +---+---+
-         | CRC16 |
-         +---+---+
-
-         +=======================+
-         |...compressed blocks...| (more-->)
-         +=======================+
-
-           0   1   2   3   4   5   6   7
-         +---+---+---+---+---+---+---+---+
-         |     CRC32     |     ISIZE     |
-         +---+---+---+---+---+---+---+---+
-
-
-
-
-Deutsch                      Informational                      [Page 5]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-      2.3.1. Member header and trailer
-
-         ID1 (IDentification 1)
-         ID2 (IDentification 2)
-            These have the fixed values ID1 = 31 (0x1f, \037), ID2 = 139
-            (0x8b, \213), to identify the file as being in gzip format.
-
-         CM (Compression Method)
-            This identifies the compression method used in the file.  CM
-            = 0-7 are reserved.  CM = 8 denotes the "deflate"
-            compression method, which is the one customarily used by
-            gzip and which is documented elsewhere.
-
-         FLG (FLaGs)
-            This flag byte is divided into individual bits as follows:
-
-               bit 0   FTEXT
-               bit 1   FHCRC
-               bit 2   FEXTRA
-               bit 3   FNAME
-               bit 4   FCOMMENT
-               bit 5   reserved
-               bit 6   reserved
-               bit 7   reserved
-
-            If FTEXT is set, the file is probably ASCII text.  This is
-            an optional indication, which the compressor may set by
-            checking a small amount of the input data to see whether any
-            non-ASCII characters are present.  In case of doubt, FTEXT
-            is cleared, indicating binary data. For systems which have
-            different file formats for ascii text and binary data, the
-            decompressor can use FTEXT to choose the appropriate format.
-            We deliberately do not specify the algorithm used to set
-            this bit, since a compressor always has the option of
-            leaving it cleared and a decompressor always has the option
-            of ignoring it and letting some other program handle issues
-            of data conversion.
-
-            If FHCRC is set, a CRC16 for the gzip header is present,
-            immediately before the compressed data. The CRC16 consists
-            of the two least significant bytes of the CRC32 for all
-            bytes of the gzip header up to and not including the CRC16.
-            [The FHCRC bit was never set by versions of gzip up to
-            1.2.4, even though it was documented with a different
-            meaning in gzip 1.2.4.]
-
-            If FEXTRA is set, optional extra fields are present, as
-            described in a following section.
-
-
-
-Deutsch                      Informational                      [Page 6]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-            If FNAME is set, an original file name is present,
-            terminated by a zero byte.  The name must consist of ISO
-            8859-1 (LATIN-1) characters; on operating systems using
-            EBCDIC or any other character set for file names, the name
-            must be translated to the ISO LATIN-1 character set.  This
-            is the original name of the file being compressed, with any
-            directory components removed, and, if the file being
-            compressed is on a file system with case insensitive names,
-            forced to lower case. There is no original file name if the
-            data was compressed from a source other than a named file;
-            for example, if the source was stdin on a Unix system, there
-            is no file name.
-
-            If FCOMMENT is set, a zero-terminated file comment is
-            present.  This comment is not interpreted; it is only
-            intended for human consumption.  The comment must consist of
-            ISO 8859-1 (LATIN-1) characters.  Line breaks should be
-            denoted by a single line feed character (10 decimal).
-
-            Reserved FLG bits must be zero.
-
-         MTIME (Modification TIME)
-            This gives the most recent modification time of the original
-            file being compressed.  The time is in Unix format, i.e.,
-            seconds since 00:00:00 GMT, Jan.  1, 1970.  (Note that this
-            may cause problems for MS-DOS and other systems that use
-            local rather than Universal time.)  If the compressed data
-            did not come from a file, MTIME is set to the time at which
-            compression started.  MTIME = 0 means no time stamp is
-            available.
-
-         XFL (eXtra FLags)
-            These flags are available for use by specific compression
-            methods.  The "deflate" method (CM = 8) sets these flags as
-            follows:
-
-               XFL = 2 - compressor used maximum compression,
-                         slowest algorithm
-               XFL = 4 - compressor used fastest algorithm
-
-         OS (Operating System)
-            This identifies the type of file system on which compression
-            took place.  This may be useful in determining end-of-line
-            convention for text files.  The currently defined values are
-            as follows:
-
-
-
-
-
-
-Deutsch                      Informational                      [Page 7]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-                 0 - FAT filesystem (MS-DOS, OS/2, NT/Win32)
-                 1 - Amiga
-                 2 - VMS (or OpenVMS)
-                 3 - Unix
-                 4 - VM/CMS
-                 5 - Atari TOS
-                 6 - HPFS filesystem (OS/2, NT)
-                 7 - Macintosh
-                 8 - Z-System
-                 9 - CP/M
-                10 - TOPS-20
-                11 - NTFS filesystem (NT)
-                12 - QDOS
-                13 - Acorn RISCOS
-               255 - unknown
-
-         XLEN (eXtra LENgth)
-            If FLG.FEXTRA is set, this gives the length of the optional
-            extra field.  See below for details.
-
-         CRC32 (CRC-32)
-            This contains a Cyclic Redundancy Check value of the
-            uncompressed data computed according to CRC-32 algorithm
-            used in the ISO 3309 standard and in section 8.1.1.6.2 of
-            ITU-T recommendation V.42.  (See http://www.iso.ch for
-            ordering ISO documents. See gopher://info.itu.ch for an
-            online version of ITU-T V.42.)
-
-         ISIZE (Input SIZE)
-            This contains the size of the original (uncompressed) input
-            data modulo 2^32.
-
-      2.3.1.1. Extra field
-
-         If the FLG.FEXTRA bit is set, an "extra field" is present in
-         the header, with total length XLEN bytes.  It consists of a
-         series of subfields, each of the form:
-
-            +---+---+---+---+==================================+
-            |SI1|SI2|  LEN  |... LEN bytes of subfield data ...|
-            +---+---+---+---+==================================+
-
-         SI1 and SI2 provide a subfield ID, typically two ASCII letters
-         with some mnemonic value.  Jean-Loup Gailly
-         <gzip@prep.ai.mit.edu> is maintaining a registry of subfield
-         IDs; please send him any subfield ID you wish to use.  Subfield
-         IDs with SI2 = 0 are reserved for future use.  The following
-         IDs are currently defined:
-
-
-
-Deutsch                      Informational                      [Page 8]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-            SI1         SI2         Data
-            ----------  ----------  ----
-            0x41 ('A')  0x70 ('P')  Apollo file type information
-
-         LEN gives the length of the subfield data, excluding the 4
-         initial bytes.
-
-      2.3.1.2. Compliance
-
-         A compliant compressor must produce files with correct ID1,
-         ID2, CM, CRC32, and ISIZE, but may set all the other fields in
-         the fixed-length part of the header to default values (255 for
-         OS, 0 for all others).  The compressor must set all reserved
-         bits to zero.
-
-         A compliant decompressor must check ID1, ID2, and CM, and
-         provide an error indication if any of these have incorrect
-         values.  It must examine FEXTRA/XLEN, FNAME, FCOMMENT and FHCRC
-         at least so it can skip over the optional fields if they are
-         present.  It need not examine any other part of the header or
-         trailer; in particular, a decompressor may ignore FTEXT and OS
-         and always produce binary output, and still be compliant.  A
-         compliant decompressor must give an error indication if any
-         reserved bit is non-zero, since such a bit could indicate the
-         presence of a new field that would cause subsequent data to be
-         interpreted incorrectly.
-
-3. References
-
-   [1] "Information Processing - 8-bit single-byte coded graphic
-       character sets - Part 1: Latin alphabet No.1" (ISO 8859-1:1987).
-       The ISO 8859-1 (Latin-1) character set is a superset of 7-bit
-       ASCII. Files defining this character set are available as
-       iso_8859-1.* in ftp://ftp.uu.net/graphics/png/documents/
-
-   [2] ISO 3309
-
-   [3] ITU-T recommendation V.42
-
-   [4] Deutsch, L.P.,"DEFLATE Compressed Data Format Specification",
-       available in ftp://ftp.uu.net/pub/archiving/zip/doc/
-
-   [5] Gailly, J.-L., GZIP documentation, available as gzip-*.tar in
-       ftp://prep.ai.mit.edu/pub/gnu/
-
-   [6] Sarwate, D.V., "Computation of Cyclic Redundancy Checks via Table
-       Look-Up", Communications of the ACM, 31(8), pp.1008-1013.
-
-
-
-
-Deutsch                      Informational                      [Page 9]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-   [7] Schwaderer, W.D., "CRC Calculation", April 85 PC Tech Journal,
-       pp.118-133.
-
-   [8] ftp://ftp.adelaide.edu.au/pub/rocksoft/papers/crc_v3.txt,
-       describing the CRC concept.
-
-4. Security Considerations
-
-   Any data compression method involves the reduction of redundancy in
-   the data.  Consequently, any corruption of the data is likely to have
-   severe effects and be difficult to correct.  Uncompressed text, on
-   the other hand, will probably still be readable despite the presence
-   of some corrupted bytes.
-
-   It is recommended that systems using this data format provide some
-   means of validating the integrity of the compressed data, such as by
-   setting and checking the CRC-32 check value.
-
-5. Acknowledgements
-
-   Trademarks cited in this document are the property of their
-   respective owners.
-
-   Jean-Loup Gailly designed the gzip format and wrote, with Mark Adler,
-   the related software described in this specification.  Glenn
-   Randers-Pehrson converted this document to RFC and HTML format.
-
-6. Author's Address
-
-   L. Peter Deutsch
-   Aladdin Enterprises
-   203 Santa Margarita Ave.
-   Menlo Park, CA 94025
-
-   Phone: (415) 322-0103 (AM only)
-   FAX:   (415) 322-1734
-   EMail: <ghost@aladdin.com>
-
-   Questions about the technical content of this specification can be
-   sent by email to:
-
-   Jean-Loup Gailly <gzip@prep.ai.mit.edu> and
-   Mark Adler <madler@alumni.caltech.edu>
-
-   Editorial comments on this specification can be sent by email to:
-
-   L. Peter Deutsch <ghost@aladdin.com> and
-   Glenn Randers-Pehrson <randeg@alumni.rpi.edu>
-
-
-
-Deutsch                      Informational                     [Page 10]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-7. Appendix: Jean-Loup Gailly's gzip utility
-
-   The most widely used implementation of gzip compression, and the
-   original documentation on which this specification is based, were
-   created by Jean-Loup Gailly <gzip@prep.ai.mit.edu>.  Since this
-   implementation is a de facto standard, we mention some more of its
-   features here.  Again, the material in this section is not part of
-   the specification per se, and implementations need not follow it to
-   be compliant.
-
-   When compressing or decompressing a file, gzip preserves the
-   protection, ownership, and modification time attributes on the local
-   file system, since there is no provision for representing protection
-   attributes in the gzip file format itself.  Since the file format
-   includes a modification time, the gzip decompressor provides a
-   command line switch that assigns the modification time from the file,
-   rather than the local modification time of the compressed input, to
-   the decompressed output.
-
-8. Appendix: Sample CRC Code
-
-   The following sample code represents a practical implementation of
-   the CRC (Cyclic Redundancy Check). (See also ISO 3309 and ITU-T V.42
-   for a formal specification.)
-
-   The sample code is in the ANSI C programming language. Non C users
-   may find it easier to read with these hints:
-
-      &      Bitwise AND operator.
-      ^      Bitwise exclusive-OR operator.
-      >>     Bitwise right shift operator. When applied to an
-             unsigned quantity, as here, right shift inserts zero
-             bit(s) at the left.
-      !      Logical NOT operator.
-      ++     "n++" increments the variable n.
-      0xNNN  0x introduces a hexadecimal (base 16) constant.
-             Suffix L indicates a long value (at least 32 bits).
-
-      /* Table of CRCs of all 8-bit messages. */
-      unsigned long crc_table[256];
-
-      /* Flag: has the table been computed? Initially false. */
-      int crc_table_computed = 0;
-
-      /* Make the table for a fast CRC. */
-      void make_crc_table(void)
-      {
-        unsigned long c;
-
-
-
-Deutsch                      Informational                     [Page 11]
-
-RFC 1952             GZIP File Format Specification             May 1996
-
-
-        int n, k;
-        for (n = 0; n < 256; n++) {
-          c = (unsigned long) n;
-          for (k = 0; k < 8; k++) {
-            if (c & 1) {
-              c = 0xedb88320L ^ (c >> 1);
-            } else {
-              c = c >> 1;
-            }
-          }
-          crc_table[n] = c;
-        }
-        crc_table_computed = 1;
-      }
-
-      /*
-         Update a running crc with the bytes buf[0..len-1] and return
-       the updated crc. The crc should be initialized to zero. Pre- and
-       post-conditioning (one's complement) is performed within this
-       function so it shouldn't be done by the caller. Usage example:
-
-         unsigned long crc = 0L;
-
-         while (read_buffer(buffer, length) != EOF) {
-           crc = update_crc(crc, buffer, length);
-         }
-         if (crc != original_crc) error();
-      */
-      unsigned long update_crc(unsigned long crc,
-                      unsigned char *buf, int len)
-      {
-        unsigned long c = crc ^ 0xffffffffL;
-        int n;
-
-        if (!crc_table_computed)
-          make_crc_table();
-        for (n = 0; n < len; n++) {
-          c = crc_table[(c ^ buf[n]) & 0xff] ^ (c >> 8);
-        }
-        return c ^ 0xffffffffL;
-      }
-
-      /* Return the CRC of the bytes buf[0..len-1]. */
-      unsigned long crc(unsigned char *buf, int len)
-      {
-        return update_crc(0L, buf, len);
-      }
-
-
-
-
-Deutsch                      Informational                     [Page 12]
-

Reply to: