[Date Prev][Date Next] [Thread Prev][Thread Next] [Date Index] [Thread Index]

Bug#763255: Bug #763255: freeimage: FTBFS: transupp.c:900: undefined reference to `jpeg_core_output_dimensions'



Control: reopen -1
Control: retitle -1 Rebuild with libjpeg-dev
Control: severity -1 serious

Hi,

I am sorry, but the whole Debian archive is now trying to move from
libjpeg8-dev to libjpeg-dev (built from libjpeg-turbo), so your previous
fix is working, but heading into opposite direction.

I am attaching a patch that adds jpeg/ subdirectory with transupp.c
from libjpeg-turbo that allows freeimage to compile with default
Debian JPEG Library.

Cheers,
-- 
Ondřej Surý <ondrej@sury.org>
Knot DNS (https://www.knot-dns.cz/) – a high-performance DNS server
diff --git a/debian/changelog b/debian/changelog
index 9f6f69f..6c542db 100644
--- a/debian/changelog
+++ b/debian/changelog
@@ -1,3 +1,12 @@
+freeimage (3.15.4-4.1) unstable; urgency=medium
+
+  * Non-maintainer upload
+  * Remove libjpeg8-dev from Build-Depends
+  * Add compatibility transupp.c from src:libjpeg-turbo and use that
+    to compile against libjpeg62 (Closes: #763255)
+
+ -- OndÅ?ej Surý <ondrej@debian.org>  Mon, 06 Oct 2014 11:29:52 +0200
+
 freeimage (3.15.4-4) unstable; urgency=medium
 
   * QA upload.
diff --git a/debian/control b/debian/control
index 608e077..9130fbb 100644
--- a/debian/control
+++ b/debian/control
@@ -5,7 +5,6 @@ Build-Depends:
  debhelper (>= 8),
  dh-autoreconf,
  libjpeg-dev,
- libjpeg8-dev,
  liblcms2-dev,
  libmng-dev,
  libopenexr-dev,
diff --git a/debian/patches/build_using_libjpeg62_transupp.c.patch b/debian/patches/build_using_libjpeg62_transupp.c.patch
new file mode 100644
index 0000000..749613c
--- /dev/null
+++ b/debian/patches/build_using_libjpeg62_transupp.c.patch
@@ -0,0 +1,2005 @@
+--- freeimage.orig/gensrclist.sh
++++ freeimage/gensrclist.sh
+@@ -12,7 +12,7 @@ for DIR in $DIRLIST; do
+ 		egrep 'RelativePath=.*\.(c|cpp)' $DIR/*.2008.vcproj | cut -d'"' -f2 | tr '\\' '/' | awk '{print "'$DIR'/"$0}' | tr '\r\n' '  ' | tr -s ' ' >> Makefile.srcs
+ 	fi
+ done
+-echo -n ' Source/LibJPEG/transupp.c' >> Makefile.srcs
++echo -n ' jpeg/transupp.c' >> Makefile.srcs
+ echo >> Makefile.srcs
+ 
+ echo -n "INCLS = " >> Makefile.srcs
+--- /dev/null
++++ freeimage/jpeg/jinclude.h
+@@ -0,0 +1,91 @@
++/*
++ * jinclude.h
++ *
++ * Copyright (C) 1991-1994, Thomas G. Lane.
++ * This file is part of the Independent JPEG Group's software.
++ * For conditions of distribution and use, see the accompanying README file.
++ *
++ * This file exists to provide a single place to fix any problems with
++ * including the wrong system include files.  (Common problems are taken
++ * care of by the standard jconfig symbols, but on really weird systems
++ * you may have to edit this file.)
++ *
++ * NOTE: this file is NOT intended to be included by applications using the
++ * JPEG library.  Most applications need only include jpeglib.h.
++ */
++
++
++/* Include auto-config file to find out which system include files we need. */
++
++#include "jconfig.h"		/* auto configuration options */
++#define JCONFIG_INCLUDED	/* so that jpeglib.h doesn't do it again */
++
++/*
++ * We need the NULL macro and size_t typedef.
++ * On an ANSI-conforming system it is sufficient to include <stddef.h>.
++ * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
++ * pull in <sys/types.h> as well.
++ * Note that the core JPEG library does not require <stdio.h>;
++ * only the default error handler and data source/destination modules do.
++ * But we must pull it in because of the references to FILE in jpeglib.h.
++ * You can remove those references if you want to compile without <stdio.h>.
++ */
++
++#ifdef HAVE_STDDEF_H
++#include <stddef.h>
++#endif
++
++#ifdef HAVE_STDLIB_H
++#include <stdlib.h>
++#endif
++
++#ifdef NEED_SYS_TYPES_H
++#include <sys/types.h>
++#endif
++
++#include <stdio.h>
++
++/*
++ * We need memory copying and zeroing functions, plus strncpy().
++ * ANSI and System V implementations declare these in <string.h>.
++ * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
++ * Some systems may declare memset and memcpy in <memory.h>.
++ *
++ * NOTE: we assume the size parameters to these functions are of type size_t.
++ * Change the casts in these macros if not!
++ */
++
++#ifdef NEED_BSD_STRINGS
++
++#include <strings.h>
++#define MEMZERO(target,size)	bzero((void *)(target), (size_t)(size))
++#define MEMCOPY(dest,src,size)	bcopy((const void *)(src), (void *)(dest), (size_t)(size))
++
++#else /* not BSD, assume ANSI/SysV string lib */
++
++#include <string.h>
++#define MEMZERO(target,size)	memset((void *)(target), 0, (size_t)(size))
++#define MEMCOPY(dest,src,size)	memcpy((void *)(dest), (const void *)(src), (size_t)(size))
++
++#endif
++
++/*
++ * In ANSI C, and indeed any rational implementation, size_t is also the
++ * type returned by sizeof().  However, it seems there are some irrational
++ * implementations out there, in which sizeof() returns an int even though
++ * size_t is defined as long or unsigned long.  To ensure consistent results
++ * we always use this SIZEOF() macro in place of using sizeof() directly.
++ */
++
++#define SIZEOF(object)	((size_t) sizeof(object))
++
++/*
++ * The modules that use fread() and fwrite() always invoke them through
++ * these macros.  On some systems you may need to twiddle the argument casts.
++ * CAUTION: argument order is different from underlying functions!
++ */
++
++#define JFREAD(file,buf,sizeofbuf)  \
++  ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
++#define JFWRITE(file,buf,sizeofbuf)  \
++  ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
+--- /dev/null
++++ freeimage/jpeg/jpegcomp.h
+@@ -0,0 +1,30 @@
++/*
++ * jpegcomp.h
++ *
++ * Copyright (C) 2010, D. R. Commander
++ * For conditions of distribution and use, see the accompanying README file.
++ *
++ * JPEG compatibility macros
++ * These declarations are considered internal to the JPEG library; most
++ * applications using the library shouldn't need to include this file.
++ */
++
++#if JPEG_LIB_VERSION >= 70
++#define _DCT_scaled_size DCT_h_scaled_size
++#define _DCT_h_scaled_size DCT_h_scaled_size
++#define _DCT_v_scaled_size DCT_v_scaled_size
++#define _min_DCT_scaled_size min_DCT_h_scaled_size
++#define _min_DCT_h_scaled_size min_DCT_h_scaled_size
++#define _min_DCT_v_scaled_size min_DCT_v_scaled_size
++#define _jpeg_width jpeg_width
++#define _jpeg_height jpeg_height
++#else
++#define _DCT_scaled_size DCT_scaled_size
++#define _DCT_h_scaled_size DCT_scaled_size
++#define _DCT_v_scaled_size DCT_scaled_size
++#define _min_DCT_scaled_size min_DCT_scaled_size
++#define _min_DCT_h_scaled_size min_DCT_scaled_size
++#define _min_DCT_v_scaled_size min_DCT_scaled_size
++#define _jpeg_width image_width
++#define _jpeg_height image_height
++#endif
+--- /dev/null
++++ freeimage/jpeg/transupp.c
+@@ -0,0 +1,1630 @@
++/*
++ * transupp.c
++ *
++ * This file was part of the Independent JPEG Group's software:
++ * Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding.
++ * libjpeg-turbo Modifications:
++ * Copyright (C) 2010, D. R. Commander.
++ * For conditions of distribution and use, see the accompanying README file.
++ *
++ * This file contains image transformation routines and other utility code
++ * used by the jpegtran sample application.  These are NOT part of the core
++ * JPEG library.  But we keep these routines separate from jpegtran.c to
++ * ease the task of maintaining jpegtran-like programs that have other user
++ * interfaces.
++ */
++
++/* Although this file really shouldn't have access to the library internals,
++ * it's helpful to let it call jround_up() and jcopy_block_row().
++ */
++#define JPEG_INTERNALS
++
++#include "jinclude.h"
++#include "jpeglib.h"
++#include "transupp.h"		/* My own external interface */
++#include "jpegcomp.h"
++#include <ctype.h>		/* to declare isdigit() */
++
++
++#if JPEG_LIB_VERSION >= 70
++#define dstinfo_min_DCT_h_scaled_size dstinfo->min_DCT_h_scaled_size
++#define dstinfo_min_DCT_v_scaled_size dstinfo->min_DCT_v_scaled_size
++#else
++#define dstinfo_min_DCT_h_scaled_size DCTSIZE
++#define dstinfo_min_DCT_v_scaled_size DCTSIZE
++#endif
++
++
++#if TRANSFORMS_SUPPORTED
++
++/*
++ * Lossless image transformation routines.  These routines work on DCT
++ * coefficient arrays and thus do not require any lossy decompression
++ * or recompression of the image.
++ * Thanks to Guido Vollbeding for the initial design and code of this feature,
++ * and to Ben Jackson for introducing the cropping feature.
++ *
++ * Horizontal flipping is done in-place, using a single top-to-bottom
++ * pass through the virtual source array.  It will thus be much the
++ * fastest option for images larger than main memory.
++ *
++ * The other routines require a set of destination virtual arrays, so they
++ * need twice as much memory as jpegtran normally does.  The destination
++ * arrays are always written in normal scan order (top to bottom) because
++ * the virtual array manager expects this.  The source arrays will be scanned
++ * in the corresponding order, which means multiple passes through the source
++ * arrays for most of the transforms.  That could result in much thrashing
++ * if the image is larger than main memory.
++ *
++ * If cropping or trimming is involved, the destination arrays may be smaller
++ * than the source arrays.  Note it is not possible to do horizontal flip
++ * in-place when a nonzero Y crop offset is specified, since we'd have to move
++ * data from one block row to another but the virtual array manager doesn't
++ * guarantee we can touch more than one row at a time.  So in that case,
++ * we have to use a separate destination array.
++ *
++ * Some notes about the operating environment of the individual transform
++ * routines:
++ * 1. Both the source and destination virtual arrays are allocated from the
++ *    source JPEG object, and therefore should be manipulated by calling the
++ *    source's memory manager.
++ * 2. The destination's component count should be used.  It may be smaller
++ *    than the source's when forcing to grayscale.
++ * 3. Likewise the destination's sampling factors should be used.  When
++ *    forcing to grayscale the destination's sampling factors will be all 1,
++ *    and we may as well take that as the effective iMCU size.
++ * 4. When "trim" is in effect, the destination's dimensions will be the
++ *    trimmed values but the source's will be untrimmed.
++ * 5. When "crop" is in effect, the destination's dimensions will be the
++ *    cropped values but the source's will be uncropped.  Each transform
++ *    routine is responsible for picking up source data starting at the
++ *    correct X and Y offset for the crop region.  (The X and Y offsets
++ *    passed to the transform routines are measured in iMCU blocks of the
++ *    destination.)
++ * 6. All the routines assume that the source and destination buffers are
++ *    padded out to a full iMCU boundary.  This is true, although for the
++ *    source buffer it is an undocumented property of jdcoefct.c.
++ */
++
++
++LOCAL(void)
++do_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	 JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
++	 jvirt_barray_ptr *src_coef_arrays,
++	 jvirt_barray_ptr *dst_coef_arrays)
++/* Crop.  This is only used when no rotate/flip is requested with the crop. */
++{
++  JDIMENSION dst_blk_y, x_crop_blocks, y_crop_blocks;
++  int ci, offset_y;
++  JBLOCKARRAY src_buffer, dst_buffer;
++  jpeg_component_info *compptr;
++
++  /* We simply have to copy the right amount of data (the destination's
++   * image size) starting at the given X and Y offsets in the source.
++   */
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
++    y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
++    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
++	 dst_blk_y += compptr->v_samp_factor) {
++      dst_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
++	 (JDIMENSION) compptr->v_samp_factor, TRUE);
++      src_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	 dst_blk_y + y_crop_blocks,
++	 (JDIMENSION) compptr->v_samp_factor, FALSE);
++      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
++	jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
++			dst_buffer[offset_y],
++			compptr->width_in_blocks);
++      }
++    }
++  }
++}
++
++
++LOCAL(void)
++do_flip_h_no_crop (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++		   JDIMENSION x_crop_offset,
++		   jvirt_barray_ptr *src_coef_arrays)
++/* Horizontal flip; done in-place, so no separate dest array is required.
++ * NB: this only works when y_crop_offset is zero.
++ */
++{
++  JDIMENSION MCU_cols, comp_width, blk_x, blk_y, x_crop_blocks;
++  int ci, k, offset_y;
++  JBLOCKARRAY buffer;
++  JCOEFPTR ptr1, ptr2;
++  JCOEF temp1, temp2;
++  jpeg_component_info *compptr;
++
++  /* Horizontal mirroring of DCT blocks is accomplished by swapping
++   * pairs of blocks in-place.  Within a DCT block, we perform horizontal
++   * mirroring by changing the signs of odd-numbered columns.
++   * Partial iMCUs at the right edge are left untouched.
++   */
++  MCU_cols = srcinfo->output_width /
++    (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size);
++
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    comp_width = MCU_cols * compptr->h_samp_factor;
++    x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
++    for (blk_y = 0; blk_y < compptr->height_in_blocks;
++	 blk_y += compptr->v_samp_factor) {
++      buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, src_coef_arrays[ci], blk_y,
++	 (JDIMENSION) compptr->v_samp_factor, TRUE);
++      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
++	/* Do the mirroring */
++	for (blk_x = 0; blk_x * 2 < comp_width; blk_x++) {
++	  ptr1 = buffer[offset_y][blk_x];
++	  ptr2 = buffer[offset_y][comp_width - blk_x - 1];
++	  /* this unrolled loop doesn't need to know which row it's on... */
++	  for (k = 0; k < DCTSIZE2; k += 2) {
++	    temp1 = *ptr1;	/* swap even column */
++	    temp2 = *ptr2;
++	    *ptr1++ = temp2;
++	    *ptr2++ = temp1;
++	    temp1 = *ptr1;	/* swap odd column with sign change */
++	    temp2 = *ptr2;
++	    *ptr1++ = -temp2;
++	    *ptr2++ = -temp1;
++	  }
++	}
++	if (x_crop_blocks > 0) {
++	  /* Now left-justify the portion of the data to be kept.
++	   * We can't use a single jcopy_block_row() call because that routine
++	   * depends on memcpy(), whose behavior is unspecified for overlapping
++	   * source and destination areas.  Sigh.
++	   */
++	  for (blk_x = 0; blk_x < compptr->width_in_blocks; blk_x++) {
++	    jcopy_block_row(buffer[offset_y] + blk_x + x_crop_blocks,
++			    buffer[offset_y] + blk_x,
++			    (JDIMENSION) 1);
++	  }
++	}
++      }
++    }
++  }
++}
++
++
++LOCAL(void)
++do_flip_h (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	   JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
++	   jvirt_barray_ptr *src_coef_arrays,
++	   jvirt_barray_ptr *dst_coef_arrays)
++/* Horizontal flip in general cropping case */
++{
++  JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
++  JDIMENSION x_crop_blocks, y_crop_blocks;
++  int ci, k, offset_y;
++  JBLOCKARRAY src_buffer, dst_buffer;
++  JBLOCKROW src_row_ptr, dst_row_ptr;
++  JCOEFPTR src_ptr, dst_ptr;
++  jpeg_component_info *compptr;
++
++  /* Here we must output into a separate array because we can't touch
++   * different rows of a single virtual array simultaneously.  Otherwise,
++   * this is essentially the same as the routine above.
++   */
++  MCU_cols = srcinfo->output_width /
++    (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size);
++
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    comp_width = MCU_cols * compptr->h_samp_factor;
++    x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
++    y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
++    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
++	 dst_blk_y += compptr->v_samp_factor) {
++      dst_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
++	 (JDIMENSION) compptr->v_samp_factor, TRUE);
++      src_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	 dst_blk_y + y_crop_blocks,
++	 (JDIMENSION) compptr->v_samp_factor, FALSE);
++      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
++	dst_row_ptr = dst_buffer[offset_y];
++	src_row_ptr = src_buffer[offset_y];
++	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
++	  if (x_crop_blocks + dst_blk_x < comp_width) {
++	    /* Do the mirrorable blocks */
++	    dst_ptr = dst_row_ptr[dst_blk_x];
++	    src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
++	    /* this unrolled loop doesn't need to know which row it's on... */
++	    for (k = 0; k < DCTSIZE2; k += 2) {
++	      *dst_ptr++ = *src_ptr++;	 /* copy even column */
++	      *dst_ptr++ = - *src_ptr++; /* copy odd column with sign change */
++	    }
++	  } else {
++	    /* Copy last partial block(s) verbatim */
++	    jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
++			    dst_row_ptr + dst_blk_x,
++			    (JDIMENSION) 1);
++	  }
++	}
++      }
++    }
++  }
++}
++
++
++LOCAL(void)
++do_flip_v (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	   JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
++	   jvirt_barray_ptr *src_coef_arrays,
++	   jvirt_barray_ptr *dst_coef_arrays)
++/* Vertical flip */
++{
++  JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
++  JDIMENSION x_crop_blocks, y_crop_blocks;
++  int ci, i, j, offset_y;
++  JBLOCKARRAY src_buffer, dst_buffer;
++  JBLOCKROW src_row_ptr, dst_row_ptr;
++  JCOEFPTR src_ptr, dst_ptr;
++  jpeg_component_info *compptr;
++
++  /* We output into a separate array because we can't touch different
++   * rows of the source virtual array simultaneously.  Otherwise, this
++   * is a pretty straightforward analog of horizontal flip.
++   * Within a DCT block, vertical mirroring is done by changing the signs
++   * of odd-numbered rows.
++   * Partial iMCUs at the bottom edge are copied verbatim.
++   */
++  MCU_rows = srcinfo->output_height /
++    (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size);
++
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    comp_height = MCU_rows * compptr->v_samp_factor;
++    x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
++    y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
++    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
++	 dst_blk_y += compptr->v_samp_factor) {
++      dst_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
++	 (JDIMENSION) compptr->v_samp_factor, TRUE);
++      if (y_crop_blocks + dst_blk_y < comp_height) {
++	/* Row is within the mirrorable area. */
++	src_buffer = (*srcinfo->mem->access_virt_barray)
++	  ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	   comp_height - y_crop_blocks - dst_blk_y -
++	   (JDIMENSION) compptr->v_samp_factor,
++	   (JDIMENSION) compptr->v_samp_factor, FALSE);
++      } else {
++	/* Bottom-edge blocks will be copied verbatim. */
++	src_buffer = (*srcinfo->mem->access_virt_barray)
++	  ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	   dst_blk_y + y_crop_blocks,
++	   (JDIMENSION) compptr->v_samp_factor, FALSE);
++      }
++      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
++	if (y_crop_blocks + dst_blk_y < comp_height) {
++	  /* Row is within the mirrorable area. */
++	  dst_row_ptr = dst_buffer[offset_y];
++	  src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
++	  src_row_ptr += x_crop_blocks;
++	  for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
++	       dst_blk_x++) {
++	    dst_ptr = dst_row_ptr[dst_blk_x];
++	    src_ptr = src_row_ptr[dst_blk_x];
++	    for (i = 0; i < DCTSIZE; i += 2) {
++	      /* copy even row */
++	      for (j = 0; j < DCTSIZE; j++)
++		*dst_ptr++ = *src_ptr++;
++	      /* copy odd row with sign change */
++	      for (j = 0; j < DCTSIZE; j++)
++		*dst_ptr++ = - *src_ptr++;
++	    }
++	  }
++	} else {
++	  /* Just copy row verbatim. */
++	  jcopy_block_row(src_buffer[offset_y] + x_crop_blocks,
++			  dst_buffer[offset_y],
++			  compptr->width_in_blocks);
++	}
++      }
++    }
++  }
++}
++
++
++LOCAL(void)
++do_transpose (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	      JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
++	      jvirt_barray_ptr *src_coef_arrays,
++	      jvirt_barray_ptr *dst_coef_arrays)
++/* Transpose source into destination */
++{
++  JDIMENSION dst_blk_x, dst_blk_y, x_crop_blocks, y_crop_blocks;
++  int ci, i, j, offset_x, offset_y;
++  JBLOCKARRAY src_buffer, dst_buffer;
++  JCOEFPTR src_ptr, dst_ptr;
++  jpeg_component_info *compptr;
++
++  /* Transposing pixels within a block just requires transposing the
++   * DCT coefficients.
++   * Partial iMCUs at the edges require no special treatment; we simply
++   * process all the available DCT blocks for every component.
++   */
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
++    y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
++    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
++	 dst_blk_y += compptr->v_samp_factor) {
++      dst_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
++	 (JDIMENSION) compptr->v_samp_factor, TRUE);
++      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
++	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
++	     dst_blk_x += compptr->h_samp_factor) {
++	  src_buffer = (*srcinfo->mem->access_virt_barray)
++	    ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	     dst_blk_x + x_crop_blocks,
++	     (JDIMENSION) compptr->h_samp_factor, FALSE);
++	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
++	    dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
++	    src_ptr = src_buffer[offset_x][dst_blk_y + offset_y + y_crop_blocks];
++	    for (i = 0; i < DCTSIZE; i++)
++	      for (j = 0; j < DCTSIZE; j++)
++		dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++	  }
++	}
++      }
++    }
++  }
++}
++
++
++LOCAL(void)
++do_rot_90 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	   JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
++	   jvirt_barray_ptr *src_coef_arrays,
++	   jvirt_barray_ptr *dst_coef_arrays)
++/* 90 degree rotation is equivalent to
++ *   1. Transposing the image;
++ *   2. Horizontal mirroring.
++ * These two steps are merged into a single processing routine.
++ */
++{
++  JDIMENSION MCU_cols, comp_width, dst_blk_x, dst_blk_y;
++  JDIMENSION x_crop_blocks, y_crop_blocks;
++  int ci, i, j, offset_x, offset_y;
++  JBLOCKARRAY src_buffer, dst_buffer;
++  JCOEFPTR src_ptr, dst_ptr;
++  jpeg_component_info *compptr;
++
++  /* Because of the horizontal mirror step, we can't process partial iMCUs
++   * at the (output) right edge properly.  They just get transposed and
++   * not mirrored.
++   */
++  MCU_cols = srcinfo->output_height /
++    (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size);
++
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    comp_width = MCU_cols * compptr->h_samp_factor;
++    x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
++    y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
++    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
++	 dst_blk_y += compptr->v_samp_factor) {
++      dst_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
++	 (JDIMENSION) compptr->v_samp_factor, TRUE);
++      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
++	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
++	     dst_blk_x += compptr->h_samp_factor) {
++	  if (x_crop_blocks + dst_blk_x < comp_width) {
++	    /* Block is within the mirrorable area. */
++	    src_buffer = (*srcinfo->mem->access_virt_barray)
++	      ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	       comp_width - x_crop_blocks - dst_blk_x -
++	       (JDIMENSION) compptr->h_samp_factor,
++	       (JDIMENSION) compptr->h_samp_factor, FALSE);
++	  } else {
++	    /* Edge blocks are transposed but not mirrored. */
++	    src_buffer = (*srcinfo->mem->access_virt_barray)
++	      ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	       dst_blk_x + x_crop_blocks,
++	       (JDIMENSION) compptr->h_samp_factor, FALSE);
++	  }
++	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
++	    dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
++	    if (x_crop_blocks + dst_blk_x < comp_width) {
++	      /* Block is within the mirrorable area. */
++	      src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
++		[dst_blk_y + offset_y + y_crop_blocks];
++	      for (i = 0; i < DCTSIZE; i++) {
++		for (j = 0; j < DCTSIZE; j++)
++		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++		i++;
++		for (j = 0; j < DCTSIZE; j++)
++		  dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
++	      }
++	    } else {
++	      /* Edge blocks are transposed but not mirrored. */
++	      src_ptr = src_buffer[offset_x]
++		[dst_blk_y + offset_y + y_crop_blocks];
++	      for (i = 0; i < DCTSIZE; i++)
++		for (j = 0; j < DCTSIZE; j++)
++		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++	    }
++	  }
++	}
++      }
++    }
++  }
++}
++
++
++LOCAL(void)
++do_rot_270 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	    JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
++	    jvirt_barray_ptr *src_coef_arrays,
++	    jvirt_barray_ptr *dst_coef_arrays)
++/* 270 degree rotation is equivalent to
++ *   1. Horizontal mirroring;
++ *   2. Transposing the image.
++ * These two steps are merged into a single processing routine.
++ */
++{
++  JDIMENSION MCU_rows, comp_height, dst_blk_x, dst_blk_y;
++  JDIMENSION x_crop_blocks, y_crop_blocks;
++  int ci, i, j, offset_x, offset_y;
++  JBLOCKARRAY src_buffer, dst_buffer;
++  JCOEFPTR src_ptr, dst_ptr;
++  jpeg_component_info *compptr;
++
++  /* Because of the horizontal mirror step, we can't process partial iMCUs
++   * at the (output) bottom edge properly.  They just get transposed and
++   * not mirrored.
++   */
++  MCU_rows = srcinfo->output_width /
++    (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size);
++
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    comp_height = MCU_rows * compptr->v_samp_factor;
++    x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
++    y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
++    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
++	 dst_blk_y += compptr->v_samp_factor) {
++      dst_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
++	 (JDIMENSION) compptr->v_samp_factor, TRUE);
++      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
++	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
++	     dst_blk_x += compptr->h_samp_factor) {
++	  src_buffer = (*srcinfo->mem->access_virt_barray)
++	    ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	     dst_blk_x + x_crop_blocks,
++	     (JDIMENSION) compptr->h_samp_factor, FALSE);
++	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
++	    dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
++	    if (y_crop_blocks + dst_blk_y < comp_height) {
++	      /* Block is within the mirrorable area. */
++	      src_ptr = src_buffer[offset_x]
++		[comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
++	      for (i = 0; i < DCTSIZE; i++) {
++		for (j = 0; j < DCTSIZE; j++) {
++		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++		  j++;
++		  dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
++		}
++	      }
++	    } else {
++	      /* Edge blocks are transposed but not mirrored. */
++	      src_ptr = src_buffer[offset_x]
++		[dst_blk_y + offset_y + y_crop_blocks];
++	      for (i = 0; i < DCTSIZE; i++)
++		for (j = 0; j < DCTSIZE; j++)
++		  dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++	    }
++	  }
++	}
++      }
++    }
++  }
++}
++
++
++LOCAL(void)
++do_rot_180 (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	    JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
++	    jvirt_barray_ptr *src_coef_arrays,
++	    jvirt_barray_ptr *dst_coef_arrays)
++/* 180 degree rotation is equivalent to
++ *   1. Vertical mirroring;
++ *   2. Horizontal mirroring.
++ * These two steps are merged into a single processing routine.
++ */
++{
++  JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
++  JDIMENSION x_crop_blocks, y_crop_blocks;
++  int ci, i, j, offset_y;
++  JBLOCKARRAY src_buffer, dst_buffer;
++  JBLOCKROW src_row_ptr, dst_row_ptr;
++  JCOEFPTR src_ptr, dst_ptr;
++  jpeg_component_info *compptr;
++
++  MCU_cols = srcinfo->output_width /
++    (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size);
++  MCU_rows = srcinfo->output_height /
++    (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size);
++
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    comp_width = MCU_cols * compptr->h_samp_factor;
++    comp_height = MCU_rows * compptr->v_samp_factor;
++    x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
++    y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
++    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
++	 dst_blk_y += compptr->v_samp_factor) {
++      dst_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
++	 (JDIMENSION) compptr->v_samp_factor, TRUE);
++      if (y_crop_blocks + dst_blk_y < comp_height) {
++	/* Row is within the vertically mirrorable area. */
++	src_buffer = (*srcinfo->mem->access_virt_barray)
++	  ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	   comp_height - y_crop_blocks - dst_blk_y -
++	   (JDIMENSION) compptr->v_samp_factor,
++	   (JDIMENSION) compptr->v_samp_factor, FALSE);
++      } else {
++	/* Bottom-edge rows are only mirrored horizontally. */
++	src_buffer = (*srcinfo->mem->access_virt_barray)
++	  ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	   dst_blk_y + y_crop_blocks,
++	   (JDIMENSION) compptr->v_samp_factor, FALSE);
++      }
++      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
++	dst_row_ptr = dst_buffer[offset_y];
++	if (y_crop_blocks + dst_blk_y < comp_height) {
++	  /* Row is within the mirrorable area. */
++	  src_row_ptr = src_buffer[compptr->v_samp_factor - offset_y - 1];
++	  for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
++	    dst_ptr = dst_row_ptr[dst_blk_x];
++	    if (x_crop_blocks + dst_blk_x < comp_width) {
++	      /* Process the blocks that can be mirrored both ways. */
++	      src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
++	      for (i = 0; i < DCTSIZE; i += 2) {
++		/* For even row, negate every odd column. */
++		for (j = 0; j < DCTSIZE; j += 2) {
++		  *dst_ptr++ = *src_ptr++;
++		  *dst_ptr++ = - *src_ptr++;
++		}
++		/* For odd row, negate every even column. */
++		for (j = 0; j < DCTSIZE; j += 2) {
++		  *dst_ptr++ = - *src_ptr++;
++		  *dst_ptr++ = *src_ptr++;
++		}
++	      }
++	    } else {
++	      /* Any remaining right-edge blocks are only mirrored vertically. */
++	      src_ptr = src_row_ptr[x_crop_blocks + dst_blk_x];
++	      for (i = 0; i < DCTSIZE; i += 2) {
++		for (j = 0; j < DCTSIZE; j++)
++		  *dst_ptr++ = *src_ptr++;
++		for (j = 0; j < DCTSIZE; j++)
++		  *dst_ptr++ = - *src_ptr++;
++	      }
++	    }
++	  }
++	} else {
++	  /* Remaining rows are just mirrored horizontally. */
++	  src_row_ptr = src_buffer[offset_y];
++	  for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks; dst_blk_x++) {
++	    if (x_crop_blocks + dst_blk_x < comp_width) {
++	      /* Process the blocks that can be mirrored. */
++	      dst_ptr = dst_row_ptr[dst_blk_x];
++	      src_ptr = src_row_ptr[comp_width - x_crop_blocks - dst_blk_x - 1];
++	      for (i = 0; i < DCTSIZE2; i += 2) {
++		*dst_ptr++ = *src_ptr++;
++		*dst_ptr++ = - *src_ptr++;
++	      }
++	    } else {
++	      /* Any remaining right-edge blocks are only copied. */
++	      jcopy_block_row(src_row_ptr + dst_blk_x + x_crop_blocks,
++			      dst_row_ptr + dst_blk_x,
++			      (JDIMENSION) 1);
++	    }
++	  }
++	}
++      }
++    }
++  }
++}
++
++
++LOCAL(void)
++do_transverse (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	       JDIMENSION x_crop_offset, JDIMENSION y_crop_offset,
++	       jvirt_barray_ptr *src_coef_arrays,
++	       jvirt_barray_ptr *dst_coef_arrays)
++/* Transverse transpose is equivalent to
++ *   1. 180 degree rotation;
++ *   2. Transposition;
++ * or
++ *   1. Horizontal mirroring;
++ *   2. Transposition;
++ *   3. Horizontal mirroring.
++ * These steps are merged into a single processing routine.
++ */
++{
++  JDIMENSION MCU_cols, MCU_rows, comp_width, comp_height, dst_blk_x, dst_blk_y;
++  JDIMENSION x_crop_blocks, y_crop_blocks;
++  int ci, i, j, offset_x, offset_y;
++  JBLOCKARRAY src_buffer, dst_buffer;
++  JCOEFPTR src_ptr, dst_ptr;
++  jpeg_component_info *compptr;
++
++  MCU_cols = srcinfo->output_height /
++    (dstinfo->max_h_samp_factor * dstinfo_min_DCT_h_scaled_size);
++  MCU_rows = srcinfo->output_width /
++    (dstinfo->max_v_samp_factor * dstinfo_min_DCT_v_scaled_size);
++
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    comp_width = MCU_cols * compptr->h_samp_factor;
++    comp_height = MCU_rows * compptr->v_samp_factor;
++    x_crop_blocks = x_crop_offset * compptr->h_samp_factor;
++    y_crop_blocks = y_crop_offset * compptr->v_samp_factor;
++    for (dst_blk_y = 0; dst_blk_y < compptr->height_in_blocks;
++	 dst_blk_y += compptr->v_samp_factor) {
++      dst_buffer = (*srcinfo->mem->access_virt_barray)
++	((j_common_ptr) srcinfo, dst_coef_arrays[ci], dst_blk_y,
++	 (JDIMENSION) compptr->v_samp_factor, TRUE);
++      for (offset_y = 0; offset_y < compptr->v_samp_factor; offset_y++) {
++	for (dst_blk_x = 0; dst_blk_x < compptr->width_in_blocks;
++	     dst_blk_x += compptr->h_samp_factor) {
++	  if (x_crop_blocks + dst_blk_x < comp_width) {
++	    /* Block is within the mirrorable area. */
++	    src_buffer = (*srcinfo->mem->access_virt_barray)
++	      ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	       comp_width - x_crop_blocks - dst_blk_x -
++	       (JDIMENSION) compptr->h_samp_factor,
++	       (JDIMENSION) compptr->h_samp_factor, FALSE);
++	  } else {
++	    src_buffer = (*srcinfo->mem->access_virt_barray)
++	      ((j_common_ptr) srcinfo, src_coef_arrays[ci],
++	       dst_blk_x + x_crop_blocks,
++	       (JDIMENSION) compptr->h_samp_factor, FALSE);
++	  }
++	  for (offset_x = 0; offset_x < compptr->h_samp_factor; offset_x++) {
++	    dst_ptr = dst_buffer[offset_y][dst_blk_x + offset_x];
++	    if (y_crop_blocks + dst_blk_y < comp_height) {
++	      if (x_crop_blocks + dst_blk_x < comp_width) {
++		/* Block is within the mirrorable area. */
++		src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
++		  [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
++		for (i = 0; i < DCTSIZE; i++) {
++		  for (j = 0; j < DCTSIZE; j++) {
++		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++		    j++;
++		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
++		  }
++		  i++;
++		  for (j = 0; j < DCTSIZE; j++) {
++		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
++		    j++;
++		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++		  }
++		}
++	      } else {
++		/* Right-edge blocks are mirrored in y only */
++		src_ptr = src_buffer[offset_x]
++		  [comp_height - y_crop_blocks - dst_blk_y - offset_y - 1];
++		for (i = 0; i < DCTSIZE; i++) {
++		  for (j = 0; j < DCTSIZE; j++) {
++		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++		    j++;
++		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
++		  }
++		}
++	      }
++	    } else {
++	      if (x_crop_blocks + dst_blk_x < comp_width) {
++		/* Bottom-edge blocks are mirrored in x only */
++		src_ptr = src_buffer[compptr->h_samp_factor - offset_x - 1]
++		  [dst_blk_y + offset_y + y_crop_blocks];
++		for (i = 0; i < DCTSIZE; i++) {
++		  for (j = 0; j < DCTSIZE; j++)
++		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++		  i++;
++		  for (j = 0; j < DCTSIZE; j++)
++		    dst_ptr[j*DCTSIZE+i] = -src_ptr[i*DCTSIZE+j];
++		}
++	      } else {
++		/* At lower right corner, just transpose, no mirroring */
++		src_ptr = src_buffer[offset_x]
++		  [dst_blk_y + offset_y + y_crop_blocks];
++		for (i = 0; i < DCTSIZE; i++)
++		  for (j = 0; j < DCTSIZE; j++)
++		    dst_ptr[j*DCTSIZE+i] = src_ptr[i*DCTSIZE+j];
++	      }
++	    }
++	  }
++	}
++      }
++    }
++  }
++}
++
++
++/* Parse an unsigned integer: subroutine for jtransform_parse_crop_spec.
++ * Returns TRUE if valid integer found, FALSE if not.
++ * *strptr is advanced over the digit string, and *result is set to its value.
++ */
++
++LOCAL(boolean)
++jt_read_integer (const char ** strptr, JDIMENSION * result)
++{
++  const char * ptr = *strptr;
++  JDIMENSION val = 0;
++
++  for (; isdigit(*ptr); ptr++) {
++    val = val * 10 + (JDIMENSION) (*ptr - '0');
++  }
++  *result = val;
++  if (ptr == *strptr)
++    return FALSE;		/* oops, no digits */
++  *strptr = ptr;
++  return TRUE;
++}
++
++
++/* Parse a crop specification (written in X11 geometry style).
++ * The routine returns TRUE if the spec string is valid, FALSE if not.
++ *
++ * The crop spec string should have the format
++ *	<width>[f]x<height>[f]{+-}<xoffset>{+-}<yoffset>
++ * where width, height, xoffset, and yoffset are unsigned integers.
++ * Each of the elements can be omitted to indicate a default value.
++ * (A weakness of this style is that it is not possible to omit xoffset
++ * while specifying yoffset, since they look alike.)
++ *
++ * This code is loosely based on XParseGeometry from the X11 distribution.
++ */
++
++GLOBAL(boolean)
++jtransform_parse_crop_spec (jpeg_transform_info *info, const char *spec)
++{
++  info->crop = FALSE;
++  info->crop_width_set = JCROP_UNSET;
++  info->crop_height_set = JCROP_UNSET;
++  info->crop_xoffset_set = JCROP_UNSET;
++  info->crop_yoffset_set = JCROP_UNSET;
++
++  if (isdigit(*spec)) {
++    /* fetch width */
++    if (! jt_read_integer(&spec, &info->crop_width))
++      return FALSE;
++    if (*spec == 'f' || *spec == 'F') {
++      spec++;
++      info->crop_width_set = JCROP_FORCE;
++    } else
++      info->crop_width_set = JCROP_POS;
++  }
++  if (*spec == 'x' || *spec == 'X') {
++    /* fetch height */
++    spec++;
++    if (! jt_read_integer(&spec, &info->crop_height))
++      return FALSE;
++    if (*spec == 'f' || *spec == 'F') {
++      spec++;
++      info->crop_height_set = JCROP_FORCE;
++    } else
++      info->crop_height_set = JCROP_POS;
++  }
++  if (*spec == '+' || *spec == '-') {
++    /* fetch xoffset */
++    info->crop_xoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
++    spec++;
++    if (! jt_read_integer(&spec, &info->crop_xoffset))
++      return FALSE;
++  }
++  if (*spec == '+' || *spec == '-') {
++    /* fetch yoffset */
++    info->crop_yoffset_set = (*spec == '-') ? JCROP_NEG : JCROP_POS;
++    spec++;
++    if (! jt_read_integer(&spec, &info->crop_yoffset))
++      return FALSE;
++  }
++  /* We had better have gotten to the end of the string. */
++  if (*spec != '\0')
++    return FALSE;
++  info->crop = TRUE;
++  return TRUE;
++}
++
++
++/* Trim off any partial iMCUs on the indicated destination edge */
++
++LOCAL(void)
++trim_right_edge (jpeg_transform_info *info, JDIMENSION full_width)
++{
++  JDIMENSION MCU_cols;
++
++  MCU_cols = info->output_width / info->iMCU_sample_width;
++  if (MCU_cols > 0 && info->x_crop_offset + MCU_cols ==
++      full_width / info->iMCU_sample_width)
++    info->output_width = MCU_cols * info->iMCU_sample_width;
++}
++
++LOCAL(void)
++trim_bottom_edge (jpeg_transform_info *info, JDIMENSION full_height)
++{
++  JDIMENSION MCU_rows;
++
++  MCU_rows = info->output_height / info->iMCU_sample_height;
++  if (MCU_rows > 0 && info->y_crop_offset + MCU_rows ==
++      full_height / info->iMCU_sample_height)
++    info->output_height = MCU_rows * info->iMCU_sample_height;
++}
++
++
++/* Request any required workspace.
++ *
++ * This routine figures out the size that the output image will be
++ * (which implies that all the transform parameters must be set before
++ * it is called).
++ *
++ * We allocate the workspace virtual arrays from the source decompression
++ * object, so that all the arrays (both the original data and the workspace)
++ * will be taken into account while making memory management decisions.
++ * Hence, this routine must be called after jpeg_read_header (which reads
++ * the image dimensions) and before jpeg_read_coefficients (which realizes
++ * the source's virtual arrays).
++ *
++ * This function returns FALSE right away if -perfect is given
++ * and transformation is not perfect.  Otherwise returns TRUE.
++ */
++
++GLOBAL(boolean)
++jtransform_request_workspace (j_decompress_ptr srcinfo,
++			      jpeg_transform_info *info)
++{
++  jvirt_barray_ptr *coef_arrays;
++  boolean need_workspace, transpose_it;
++  jpeg_component_info *compptr;
++  JDIMENSION xoffset, yoffset;
++  JDIMENSION width_in_iMCUs, height_in_iMCUs;
++  JDIMENSION width_in_blocks, height_in_blocks;
++  int ci, h_samp_factor, v_samp_factor;
++
++  /* Determine number of components in output image */
++  if (info->force_grayscale &&
++      srcinfo->jpeg_color_space == JCS_YCbCr &&
++      srcinfo->num_components == 3)
++    /* We'll only process the first component */
++    info->num_components = 1;
++  else
++    /* Process all the components */
++    info->num_components = srcinfo->num_components;
++
++  /* Compute output image dimensions and related values. */
++#if JPEG_LIB_VERSION >= 80
++  jpeg_core_output_dimensions(srcinfo);
++#else
++  srcinfo->output_width = srcinfo->image_width;
++  srcinfo->output_height = srcinfo->image_height;
++#endif
++
++  /* Return right away if -perfect is given and transformation is not perfect.
++   */
++  if (info->perfect) {
++    if (info->num_components == 1) {
++      if (!jtransform_perfect_transform(srcinfo->output_width,
++	  srcinfo->output_height,
++	  srcinfo->_min_DCT_h_scaled_size,
++	  srcinfo->_min_DCT_v_scaled_size,
++	  info->transform))
++	return FALSE;
++    } else {
++      if (!jtransform_perfect_transform(srcinfo->output_width,
++	  srcinfo->output_height,
++	  srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size,
++	  srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size,
++	  info->transform))
++	return FALSE;
++    }
++  }
++
++  /* If there is only one output component, force the iMCU size to be 1;
++   * else use the source iMCU size.  (This allows us to do the right thing
++   * when reducing color to grayscale, and also provides a handy way of
++   * cleaning up "funny" grayscale images whose sampling factors are not 1x1.)
++   */
++  switch (info->transform) {
++  case JXFORM_TRANSPOSE:
++  case JXFORM_TRANSVERSE:
++  case JXFORM_ROT_90:
++  case JXFORM_ROT_270:
++    info->output_width = srcinfo->output_height;
++    info->output_height = srcinfo->output_width;
++    if (info->num_components == 1) {
++      info->iMCU_sample_width = srcinfo->_min_DCT_v_scaled_size;
++      info->iMCU_sample_height = srcinfo->_min_DCT_h_scaled_size;
++    } else {
++      info->iMCU_sample_width =
++	srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size;
++      info->iMCU_sample_height =
++	srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size;
++    }
++    break;
++  default:
++    info->output_width = srcinfo->output_width;
++    info->output_height = srcinfo->output_height;
++    if (info->num_components == 1) {
++      info->iMCU_sample_width = srcinfo->_min_DCT_h_scaled_size;
++      info->iMCU_sample_height = srcinfo->_min_DCT_v_scaled_size;
++    } else {
++      info->iMCU_sample_width =
++	srcinfo->max_h_samp_factor * srcinfo->_min_DCT_h_scaled_size;
++      info->iMCU_sample_height =
++	srcinfo->max_v_samp_factor * srcinfo->_min_DCT_v_scaled_size;
++    }
++    break;
++  }
++
++  /* If cropping has been requested, compute the crop area's position and
++   * dimensions, ensuring that its upper left corner falls at an iMCU boundary.
++   */
++  if (info->crop) {
++    /* Insert default values for unset crop parameters */
++    if (info->crop_xoffset_set == JCROP_UNSET)
++      info->crop_xoffset = 0;	/* default to +0 */
++    if (info->crop_yoffset_set == JCROP_UNSET)
++      info->crop_yoffset = 0;	/* default to +0 */
++    if (info->crop_xoffset >= info->output_width ||
++	info->crop_yoffset >= info->output_height)
++      ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
++    if (info->crop_width_set == JCROP_UNSET)
++      info->crop_width = info->output_width - info->crop_xoffset;
++    if (info->crop_height_set == JCROP_UNSET)
++      info->crop_height = info->output_height - info->crop_yoffset;
++    /* Ensure parameters are valid */
++    if (info->crop_width <= 0 || info->crop_width > info->output_width ||
++	info->crop_height <= 0 || info->crop_height > info->output_height ||
++	info->crop_xoffset > info->output_width - info->crop_width ||
++	info->crop_yoffset > info->output_height - info->crop_height)
++      ERREXIT(srcinfo, JERR_BAD_CROP_SPEC);
++    /* Convert negative crop offsets into regular offsets */
++    if (info->crop_xoffset_set == JCROP_NEG)
++      xoffset = info->output_width - info->crop_width - info->crop_xoffset;
++    else
++      xoffset = info->crop_xoffset;
++    if (info->crop_yoffset_set == JCROP_NEG)
++      yoffset = info->output_height - info->crop_height - info->crop_yoffset;
++    else
++      yoffset = info->crop_yoffset;
++    /* Now adjust so that upper left corner falls at an iMCU boundary */
++    if (info->crop_width_set == JCROP_FORCE)
++      info->output_width = info->crop_width;
++    else
++      info->output_width =
++        info->crop_width + (xoffset % info->iMCU_sample_width);
++    if (info->crop_height_set == JCROP_FORCE)
++      info->output_height = info->crop_height;
++    else
++      info->output_height =
++        info->crop_height + (yoffset % info->iMCU_sample_height);
++    /* Save x/y offsets measured in iMCUs */
++    info->x_crop_offset = xoffset / info->iMCU_sample_width;
++    info->y_crop_offset = yoffset / info->iMCU_sample_height;
++  } else {
++    info->x_crop_offset = 0;
++    info->y_crop_offset = 0;
++  }
++
++  /* Figure out whether we need workspace arrays,
++   * and if so whether they are transposed relative to the source.
++   */
++  need_workspace = FALSE;
++  transpose_it = FALSE;
++  switch (info->transform) {
++  case JXFORM_NONE:
++    if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
++      need_workspace = TRUE;
++    /* No workspace needed if neither cropping nor transforming */
++    break;
++  case JXFORM_FLIP_H:
++    if (info->trim)
++      trim_right_edge(info, srcinfo->output_width);
++    if (info->y_crop_offset != 0 || info->slow_hflip)
++      need_workspace = TRUE;
++    /* do_flip_h_no_crop doesn't need a workspace array */
++    break;
++  case JXFORM_FLIP_V:
++    if (info->trim)
++      trim_bottom_edge(info, srcinfo->output_height);
++    /* Need workspace arrays having same dimensions as source image. */
++    need_workspace = TRUE;
++    break;
++  case JXFORM_TRANSPOSE:
++    /* transpose does NOT have to trim anything */
++    /* Need workspace arrays having transposed dimensions. */
++    need_workspace = TRUE;
++    transpose_it = TRUE;
++    break;
++  case JXFORM_TRANSVERSE:
++    if (info->trim) {
++      trim_right_edge(info, srcinfo->output_height);
++      trim_bottom_edge(info, srcinfo->output_width);
++    }
++    /* Need workspace arrays having transposed dimensions. */
++    need_workspace = TRUE;
++    transpose_it = TRUE;
++    break;
++  case JXFORM_ROT_90:
++    if (info->trim)
++      trim_right_edge(info, srcinfo->output_height);
++    /* Need workspace arrays having transposed dimensions. */
++    need_workspace = TRUE;
++    transpose_it = TRUE;
++    break;
++  case JXFORM_ROT_180:
++    if (info->trim) {
++      trim_right_edge(info, srcinfo->output_width);
++      trim_bottom_edge(info, srcinfo->output_height);
++    }
++    /* Need workspace arrays having same dimensions as source image. */
++    need_workspace = TRUE;
++    break;
++  case JXFORM_ROT_270:
++    if (info->trim)
++      trim_bottom_edge(info, srcinfo->output_width);
++    /* Need workspace arrays having transposed dimensions. */
++    need_workspace = TRUE;
++    transpose_it = TRUE;
++    break;
++  }
++
++  /* Allocate workspace if needed.
++   * Note that we allocate arrays padded out to the next iMCU boundary,
++   * so that transform routines need not worry about missing edge blocks.
++   */
++  if (need_workspace) {
++    coef_arrays = (jvirt_barray_ptr *)
++      (*srcinfo->mem->alloc_small) ((j_common_ptr) srcinfo, JPOOL_IMAGE,
++		SIZEOF(jvirt_barray_ptr) * info->num_components);
++    width_in_iMCUs = (JDIMENSION)
++      jdiv_round_up((long) info->output_width,
++		    (long) info->iMCU_sample_width);
++    height_in_iMCUs = (JDIMENSION)
++      jdiv_round_up((long) info->output_height,
++		    (long) info->iMCU_sample_height);
++    for (ci = 0; ci < info->num_components; ci++) {
++      compptr = srcinfo->comp_info + ci;
++      if (info->num_components == 1) {
++	/* we're going to force samp factors to 1x1 in this case */
++	h_samp_factor = v_samp_factor = 1;
++      } else if (transpose_it) {
++	h_samp_factor = compptr->v_samp_factor;
++	v_samp_factor = compptr->h_samp_factor;
++      } else {
++	h_samp_factor = compptr->h_samp_factor;
++	v_samp_factor = compptr->v_samp_factor;
++      }
++      width_in_blocks = width_in_iMCUs * h_samp_factor;
++      height_in_blocks = height_in_iMCUs * v_samp_factor;
++      coef_arrays[ci] = (*srcinfo->mem->request_virt_barray)
++	((j_common_ptr) srcinfo, JPOOL_IMAGE, FALSE,
++	 width_in_blocks, height_in_blocks, (JDIMENSION) v_samp_factor);
++    }
++    info->workspace_coef_arrays = coef_arrays;
++  } else
++    info->workspace_coef_arrays = NULL;
++
++  return TRUE;
++}
++
++
++/* Transpose destination image parameters */
++
++LOCAL(void)
++transpose_critical_parameters (j_compress_ptr dstinfo)
++{
++  int tblno, i, j, ci, itemp;
++  jpeg_component_info *compptr;
++  JQUANT_TBL *qtblptr;
++  JDIMENSION jtemp;
++  UINT16 qtemp;
++
++  /* Transpose image dimensions */
++  jtemp = dstinfo->image_width;
++  dstinfo->image_width = dstinfo->image_height;
++  dstinfo->image_height = jtemp;
++#if JPEG_LIB_VERSION >= 70
++  itemp = dstinfo->min_DCT_h_scaled_size;
++  dstinfo->min_DCT_h_scaled_size = dstinfo->min_DCT_v_scaled_size;
++  dstinfo->min_DCT_v_scaled_size = itemp;
++#endif
++
++  /* Transpose sampling factors */
++  for (ci = 0; ci < dstinfo->num_components; ci++) {
++    compptr = dstinfo->comp_info + ci;
++    itemp = compptr->h_samp_factor;
++    compptr->h_samp_factor = compptr->v_samp_factor;
++    compptr->v_samp_factor = itemp;
++  }
++
++  /* Transpose quantization tables */
++  for (tblno = 0; tblno < NUM_QUANT_TBLS; tblno++) {
++    qtblptr = dstinfo->quant_tbl_ptrs[tblno];
++    if (qtblptr != NULL) {
++      for (i = 0; i < DCTSIZE; i++) {
++	for (j = 0; j < i; j++) {
++	  qtemp = qtblptr->quantval[i*DCTSIZE+j];
++	  qtblptr->quantval[i*DCTSIZE+j] = qtblptr->quantval[j*DCTSIZE+i];
++	  qtblptr->quantval[j*DCTSIZE+i] = qtemp;
++	}
++      }
++    }
++  }
++}
++
++
++/* Adjust Exif image parameters.
++ *
++ * We try to adjust the Tags ExifImageWidth and ExifImageHeight if possible.
++ */
++
++#if JPEG_LIB_VERSION >= 70
++LOCAL(void)
++adjust_exif_parameters (JOCTET FAR * data, unsigned int length,
++			JDIMENSION new_width, JDIMENSION new_height)
++{
++  boolean is_motorola; /* Flag for byte order */
++  unsigned int number_of_tags, tagnum;
++  unsigned int firstoffset, offset;
++  JDIMENSION new_value;
++
++  if (length < 12) return; /* Length of an IFD entry */
++
++  /* Discover byte order */
++  if (GETJOCTET(data[0]) == 0x49 && GETJOCTET(data[1]) == 0x49)
++    is_motorola = FALSE;
++  else if (GETJOCTET(data[0]) == 0x4D && GETJOCTET(data[1]) == 0x4D)
++    is_motorola = TRUE;
++  else
++    return;
++
++  /* Check Tag Mark */
++  if (is_motorola) {
++    if (GETJOCTET(data[2]) != 0) return;
++    if (GETJOCTET(data[3]) != 0x2A) return;
++  } else {
++    if (GETJOCTET(data[3]) != 0) return;
++    if (GETJOCTET(data[2]) != 0x2A) return;
++  }
++
++  /* Get first IFD offset (offset to IFD0) */
++  if (is_motorola) {
++    if (GETJOCTET(data[4]) != 0) return;
++    if (GETJOCTET(data[5]) != 0) return;
++    firstoffset = GETJOCTET(data[6]);
++    firstoffset <<= 8;
++    firstoffset += GETJOCTET(data[7]);
++  } else {
++    if (GETJOCTET(data[7]) != 0) return;
++    if (GETJOCTET(data[6]) != 0) return;
++    firstoffset = GETJOCTET(data[5]);
++    firstoffset <<= 8;
++    firstoffset += GETJOCTET(data[4]);
++  }
++  if (firstoffset > length - 2) return; /* check end of data segment */
++
++  /* Get the number of directory entries contained in this IFD */
++  if (is_motorola) {
++    number_of_tags = GETJOCTET(data[firstoffset]);
++    number_of_tags <<= 8;
++    number_of_tags += GETJOCTET(data[firstoffset+1]);
++  } else {
++    number_of_tags = GETJOCTET(data[firstoffset+1]);
++    number_of_tags <<= 8;
++    number_of_tags += GETJOCTET(data[firstoffset]);
++  }
++  if (number_of_tags == 0) return;
++  firstoffset += 2;
++
++  /* Search for ExifSubIFD offset Tag in IFD0 */
++  for (;;) {
++    if (firstoffset > length - 12) return; /* check end of data segment */
++    /* Get Tag number */
++    if (is_motorola) {
++      tagnum = GETJOCTET(data[firstoffset]);
++      tagnum <<= 8;
++      tagnum += GETJOCTET(data[firstoffset+1]);
++    } else {
++      tagnum = GETJOCTET(data[firstoffset+1]);
++      tagnum <<= 8;
++      tagnum += GETJOCTET(data[firstoffset]);
++    }
++    if (tagnum == 0x8769) break; /* found ExifSubIFD offset Tag */
++    if (--number_of_tags == 0) return;
++    firstoffset += 12;
++  }
++
++  /* Get the ExifSubIFD offset */
++  if (is_motorola) {
++    if (GETJOCTET(data[firstoffset+8]) != 0) return;
++    if (GETJOCTET(data[firstoffset+9]) != 0) return;
++    offset = GETJOCTET(data[firstoffset+10]);
++    offset <<= 8;
++    offset += GETJOCTET(data[firstoffset+11]);
++  } else {
++    if (GETJOCTET(data[firstoffset+11]) != 0) return;
++    if (GETJOCTET(data[firstoffset+10]) != 0) return;
++    offset = GETJOCTET(data[firstoffset+9]);
++    offset <<= 8;
++    offset += GETJOCTET(data[firstoffset+8]);
++  }
++  if (offset > length - 2) return; /* check end of data segment */
++
++  /* Get the number of directory entries contained in this SubIFD */
++  if (is_motorola) {
++    number_of_tags = GETJOCTET(data[offset]);
++    number_of_tags <<= 8;
++    number_of_tags += GETJOCTET(data[offset+1]);
++  } else {
++    number_of_tags = GETJOCTET(data[offset+1]);
++    number_of_tags <<= 8;
++    number_of_tags += GETJOCTET(data[offset]);
++  }
++  if (number_of_tags < 2) return;
++  offset += 2;
++
++  /* Search for ExifImageWidth and ExifImageHeight Tags in this SubIFD */
++  do {
++    if (offset > length - 12) return; /* check end of data segment */
++    /* Get Tag number */
++    if (is_motorola) {
++      tagnum = GETJOCTET(data[offset]);
++      tagnum <<= 8;
++      tagnum += GETJOCTET(data[offset+1]);
++    } else {
++      tagnum = GETJOCTET(data[offset+1]);
++      tagnum <<= 8;
++      tagnum += GETJOCTET(data[offset]);
++    }
++    if (tagnum == 0xA002 || tagnum == 0xA003) {
++      if (tagnum == 0xA002)
++	new_value = new_width; /* ExifImageWidth Tag */
++      else
++	new_value = new_height; /* ExifImageHeight Tag */
++      if (is_motorola) {
++	data[offset+2] = 0; /* Format = unsigned long (4 octets) */
++	data[offset+3] = 4;
++	data[offset+4] = 0; /* Number Of Components = 1 */
++	data[offset+5] = 0;
++	data[offset+6] = 0;
++	data[offset+7] = 1;
++	data[offset+8] = 0;
++	data[offset+9] = 0;
++	data[offset+10] = (JOCTET)((new_value >> 8) & 0xFF);
++	data[offset+11] = (JOCTET)(new_value & 0xFF);
++      } else {
++	data[offset+2] = 4; /* Format = unsigned long (4 octets) */
++	data[offset+3] = 0;
++	data[offset+4] = 1; /* Number Of Components = 1 */
++	data[offset+5] = 0;
++	data[offset+6] = 0;
++	data[offset+7] = 0;
++	data[offset+8] = (JOCTET)(new_value & 0xFF);
++	data[offset+9] = (JOCTET)((new_value >> 8) & 0xFF);
++	data[offset+10] = 0;
++	data[offset+11] = 0;
++      }
++    }
++    offset += 12;
++  } while (--number_of_tags);
++}
++#endif
++
++
++/* Adjust output image parameters as needed.
++ *
++ * This must be called after jpeg_copy_critical_parameters()
++ * and before jpeg_write_coefficients().
++ *
++ * The return value is the set of virtual coefficient arrays to be written
++ * (either the ones allocated by jtransform_request_workspace, or the
++ * original source data arrays).  The caller will need to pass this value
++ * to jpeg_write_coefficients().
++ */
++
++GLOBAL(jvirt_barray_ptr *)
++jtransform_adjust_parameters (j_decompress_ptr srcinfo,
++			      j_compress_ptr dstinfo,
++			      jvirt_barray_ptr *src_coef_arrays,
++			      jpeg_transform_info *info)
++{
++  /* If force-to-grayscale is requested, adjust destination parameters */
++  if (info->force_grayscale) {
++    /* First, ensure we have YCbCr or grayscale data, and that the source's
++     * Y channel is full resolution.  (No reasonable person would make Y
++     * be less than full resolution, so actually coping with that case
++     * isn't worth extra code space.  But we check it to avoid crashing.)
++     */
++    if (((dstinfo->jpeg_color_space == JCS_YCbCr &&
++	  dstinfo->num_components == 3) ||
++	 (dstinfo->jpeg_color_space == JCS_GRAYSCALE &&
++	  dstinfo->num_components == 1)) &&
++	srcinfo->comp_info[0].h_samp_factor == srcinfo->max_h_samp_factor &&
++	srcinfo->comp_info[0].v_samp_factor == srcinfo->max_v_samp_factor) {
++      /* We use jpeg_set_colorspace to make sure subsidiary settings get fixed
++       * properly.  Among other things, it sets the target h_samp_factor &
++       * v_samp_factor to 1, which typically won't match the source.
++       * We have to preserve the source's quantization table number, however.
++       */
++      int sv_quant_tbl_no = dstinfo->comp_info[0].quant_tbl_no;
++      jpeg_set_colorspace(dstinfo, JCS_GRAYSCALE);
++      dstinfo->comp_info[0].quant_tbl_no = sv_quant_tbl_no;
++    } else {
++      /* Sorry, can't do it */
++      ERREXIT(dstinfo, JERR_CONVERSION_NOTIMPL);
++    }
++  } else if (info->num_components == 1) {
++    /* For a single-component source, we force the destination sampling factors
++     * to 1x1, with or without force_grayscale.  This is useful because some
++     * decoders choke on grayscale images with other sampling factors.
++     */
++    dstinfo->comp_info[0].h_samp_factor = 1;
++    dstinfo->comp_info[0].v_samp_factor = 1;
++  }
++
++  /* Correct the destination's image dimensions as necessary
++   * for rotate/flip, resize, and crop operations.
++   */
++#if JPEG_LIB_VERSION >= 70
++  dstinfo->jpeg_width = info->output_width;
++  dstinfo->jpeg_height = info->output_height;
++#endif
++
++  /* Transpose destination image parameters */
++  switch (info->transform) {
++  case JXFORM_TRANSPOSE:
++  case JXFORM_TRANSVERSE:
++  case JXFORM_ROT_90:
++  case JXFORM_ROT_270:
++#if JPEG_LIB_VERSION < 70
++    dstinfo->image_width = info->output_height;
++    dstinfo->image_height = info->output_width;
++#endif
++    transpose_critical_parameters(dstinfo);
++    break;
++  default:
++#if JPEG_LIB_VERSION < 70
++    dstinfo->image_width = info->output_width;
++    dstinfo->image_height = info->output_height;
++#endif
++    break;
++  }
++
++  /* Adjust Exif properties */
++  if (srcinfo->marker_list != NULL &&
++      srcinfo->marker_list->marker == JPEG_APP0+1 &&
++      srcinfo->marker_list->data_length >= 6 &&
++      GETJOCTET(srcinfo->marker_list->data[0]) == 0x45 &&
++      GETJOCTET(srcinfo->marker_list->data[1]) == 0x78 &&
++      GETJOCTET(srcinfo->marker_list->data[2]) == 0x69 &&
++      GETJOCTET(srcinfo->marker_list->data[3]) == 0x66 &&
++      GETJOCTET(srcinfo->marker_list->data[4]) == 0 &&
++      GETJOCTET(srcinfo->marker_list->data[5]) == 0) {
++    /* Suppress output of JFIF marker */
++    dstinfo->write_JFIF_header = FALSE;
++#if JPEG_LIB_VERSION >= 70
++    /* Adjust Exif image parameters */
++    if (dstinfo->jpeg_width != srcinfo->image_width ||
++	dstinfo->jpeg_height != srcinfo->image_height)
++      /* Align data segment to start of TIFF structure for parsing */
++      adjust_exif_parameters(srcinfo->marker_list->data + 6,
++	srcinfo->marker_list->data_length - 6,
++	dstinfo->jpeg_width, dstinfo->jpeg_height);
++#endif
++  }
++
++  /* Return the appropriate output data set */
++  if (info->workspace_coef_arrays != NULL)
++    return info->workspace_coef_arrays;
++  return src_coef_arrays;
++}
++
++
++/* Execute the actual transformation, if any.
++ *
++ * This must be called *after* jpeg_write_coefficients, because it depends
++ * on jpeg_write_coefficients to have computed subsidiary values such as
++ * the per-component width and height fields in the destination object.
++ *
++ * Note that some transformations will modify the source data arrays!
++ */
++
++GLOBAL(void)
++jtransform_execute_transform (j_decompress_ptr srcinfo,
++			      j_compress_ptr dstinfo,
++			      jvirt_barray_ptr *src_coef_arrays,
++			      jpeg_transform_info *info)
++{
++  jvirt_barray_ptr *dst_coef_arrays = info->workspace_coef_arrays;
++
++  /* Note: conditions tested here should match those in switch statement
++   * in jtransform_request_workspace()
++   */
++  switch (info->transform) {
++  case JXFORM_NONE:
++    if (info->x_crop_offset != 0 || info->y_crop_offset != 0)
++      do_crop(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
++	      src_coef_arrays, dst_coef_arrays);
++    break;
++  case JXFORM_FLIP_H:
++    if (info->y_crop_offset != 0 || info->slow_hflip)
++      do_flip_h(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
++		src_coef_arrays, dst_coef_arrays);
++    else
++      do_flip_h_no_crop(srcinfo, dstinfo, info->x_crop_offset,
++			src_coef_arrays);
++    break;
++  case JXFORM_FLIP_V:
++    do_flip_v(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
++	      src_coef_arrays, dst_coef_arrays);
++    break;
++  case JXFORM_TRANSPOSE:
++    do_transpose(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
++		 src_coef_arrays, dst_coef_arrays);
++    break;
++  case JXFORM_TRANSVERSE:
++    do_transverse(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
++		  src_coef_arrays, dst_coef_arrays);
++    break;
++  case JXFORM_ROT_90:
++    do_rot_90(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
++	      src_coef_arrays, dst_coef_arrays);
++    break;
++  case JXFORM_ROT_180:
++    do_rot_180(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
++	       src_coef_arrays, dst_coef_arrays);
++    break;
++  case JXFORM_ROT_270:
++    do_rot_270(srcinfo, dstinfo, info->x_crop_offset, info->y_crop_offset,
++	       src_coef_arrays, dst_coef_arrays);
++    break;
++  }
++}
++
++/* jtransform_perfect_transform
++ *
++ * Determine whether lossless transformation is perfectly
++ * possible for a specified image and transformation.
++ *
++ * Inputs:
++ *   image_width, image_height: source image dimensions.
++ *   MCU_width, MCU_height: pixel dimensions of MCU.
++ *   transform: transformation identifier.
++ * Parameter sources from initialized jpeg_struct
++ * (after reading source header):
++ *   image_width = cinfo.image_width
++ *   image_height = cinfo.image_height
++ *   MCU_width = cinfo.max_h_samp_factor * cinfo.block_size
++ *   MCU_height = cinfo.max_v_samp_factor * cinfo.block_size
++ * Result:
++ *   TRUE = perfect transformation possible
++ *   FALSE = perfect transformation not possible
++ *           (may use custom action then)
++ */
++
++GLOBAL(boolean)
++jtransform_perfect_transform(JDIMENSION image_width, JDIMENSION image_height,
++			     int MCU_width, int MCU_height,
++			     JXFORM_CODE transform)
++{
++  boolean result = TRUE; /* initialize TRUE */
++
++  switch (transform) {
++  case JXFORM_FLIP_H:
++  case JXFORM_ROT_270:
++    if (image_width % (JDIMENSION) MCU_width)
++      result = FALSE;
++    break;
++  case JXFORM_FLIP_V:
++  case JXFORM_ROT_90:
++    if (image_height % (JDIMENSION) MCU_height)
++      result = FALSE;
++    break;
++  case JXFORM_TRANSVERSE:
++  case JXFORM_ROT_180:
++    if (image_width % (JDIMENSION) MCU_width)
++      result = FALSE;
++    if (image_height % (JDIMENSION) MCU_height)
++      result = FALSE;
++    break;
++  default:
++    break;
++  }
++
++  return result;
++}
++
++#endif /* TRANSFORMS_SUPPORTED */
++
++
++/* Setup decompression object to save desired markers in memory.
++ * This must be called before jpeg_read_header() to have the desired effect.
++ */
++
++GLOBAL(void)
++jcopy_markers_setup (j_decompress_ptr srcinfo, JCOPY_OPTION option)
++{
++#ifdef SAVE_MARKERS_SUPPORTED
++  int m;
++
++  /* Save comments except under NONE option */
++  if (option != JCOPYOPT_NONE) {
++    jpeg_save_markers(srcinfo, JPEG_COM, 0xFFFF);
++  }
++  /* Save all types of APPn markers iff ALL option */
++  if (option == JCOPYOPT_ALL) {
++    for (m = 0; m < 16; m++)
++      jpeg_save_markers(srcinfo, JPEG_APP0 + m, 0xFFFF);
++  }
++#endif /* SAVE_MARKERS_SUPPORTED */
++}
++
++/* Copy markers saved in the given source object to the destination object.
++ * This should be called just after jpeg_start_compress() or
++ * jpeg_write_coefficients().
++ * Note that those routines will have written the SOI, and also the
++ * JFIF APP0 or Adobe APP14 markers if selected.
++ */
++
++GLOBAL(void)
++jcopy_markers_execute (j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++		       JCOPY_OPTION option)
++{
++  jpeg_saved_marker_ptr marker;
++
++  /* In the current implementation, we don't actually need to examine the
++   * option flag here; we just copy everything that got saved.
++   * But to avoid confusion, we do not output JFIF and Adobe APP14 markers
++   * if the encoder library already wrote one.
++   */
++  for (marker = srcinfo->marker_list; marker != NULL; marker = marker->next) {
++    if (dstinfo->write_JFIF_header &&
++	marker->marker == JPEG_APP0 &&
++	marker->data_length >= 5 &&
++	GETJOCTET(marker->data[0]) == 0x4A &&
++	GETJOCTET(marker->data[1]) == 0x46 &&
++	GETJOCTET(marker->data[2]) == 0x49 &&
++	GETJOCTET(marker->data[3]) == 0x46 &&
++	GETJOCTET(marker->data[4]) == 0)
++      continue;			/* reject duplicate JFIF */
++    if (dstinfo->write_Adobe_marker &&
++	marker->marker == JPEG_APP0+14 &&
++	marker->data_length >= 5 &&
++	GETJOCTET(marker->data[0]) == 0x41 &&
++	GETJOCTET(marker->data[1]) == 0x64 &&
++	GETJOCTET(marker->data[2]) == 0x6F &&
++	GETJOCTET(marker->data[3]) == 0x62 &&
++	GETJOCTET(marker->data[4]) == 0x65)
++      continue;			/* reject duplicate Adobe */
++#ifdef NEED_FAR_POINTERS
++    /* We could use jpeg_write_marker if the data weren't FAR... */
++    {
++      unsigned int i;
++      jpeg_write_m_header(dstinfo, marker->marker, marker->data_length);
++      for (i = 0; i < marker->data_length; i++)
++	jpeg_write_m_byte(dstinfo, marker->data[i]);
++    }
++#else
++    jpeg_write_marker(dstinfo, marker->marker,
++		      marker->data, marker->data_length);
++#endif
++  }
++}
+--- /dev/null
++++ freeimage/jpeg/transupp.h
+@@ -0,0 +1,220 @@
++/*
++ * transupp.h
++ *
++ * Copyright (C) 1997-2011, Thomas G. Lane, Guido Vollbeding.
++ * This file is part of the Independent JPEG Group's software.
++ * For conditions of distribution and use, see the accompanying README file.
++ *
++ * This file contains declarations for image transformation routines and
++ * other utility code used by the jpegtran sample application.  These are
++ * NOT part of the core JPEG library.  But we keep these routines separate
++ * from jpegtran.c to ease the task of maintaining jpegtran-like programs
++ * that have other user interfaces.
++ *
++ * NOTE: all the routines declared here have very specific requirements
++ * about when they are to be executed during the reading and writing of the
++ * source and destination files.  See the comments in transupp.c, or see
++ * jpegtran.c for an example of correct usage.
++ */
++
++/* If you happen not to want the image transform support, disable it here */
++#ifndef TRANSFORMS_SUPPORTED
++#define TRANSFORMS_SUPPORTED 1		/* 0 disables transform code */
++#endif
++
++/*
++ * Although rotating and flipping data expressed as DCT coefficients is not
++ * hard, there is an asymmetry in the JPEG format specification for images
++ * whose dimensions aren't multiples of the iMCU size.  The right and bottom
++ * image edges are padded out to the next iMCU boundary with junk data; but
++ * no padding is possible at the top and left edges.  If we were to flip
++ * the whole image including the pad data, then pad garbage would become
++ * visible at the top and/or left, and real pixels would disappear into the
++ * pad margins --- perhaps permanently, since encoders & decoders may not
++ * bother to preserve DCT blocks that appear to be completely outside the
++ * nominal image area.  So, we have to exclude any partial iMCUs from the
++ * basic transformation.
++ *
++ * Transpose is the only transformation that can handle partial iMCUs at the
++ * right and bottom edges completely cleanly.  flip_h can flip partial iMCUs
++ * at the bottom, but leaves any partial iMCUs at the right edge untouched.
++ * Similarly flip_v leaves any partial iMCUs at the bottom edge untouched.
++ * The other transforms are defined as combinations of these basic transforms
++ * and process edge blocks in a way that preserves the equivalence.
++ *
++ * The "trim" option causes untransformable partial iMCUs to be dropped;
++ * this is not strictly lossless, but it usually gives the best-looking
++ * result for odd-size images.  Note that when this option is active,
++ * the expected mathematical equivalences between the transforms may not hold.
++ * (For example, -rot 270 -trim trims only the bottom edge, but -rot 90 -trim
++ * followed by -rot 180 -trim trims both edges.)
++ *
++ * We also offer a lossless-crop option, which discards data outside a given
++ * image region but losslessly preserves what is inside.  Like the rotate and
++ * flip transforms, lossless crop is restricted by the JPEG format: the upper
++ * left corner of the selected region must fall on an iMCU boundary.  If this
++ * does not hold for the given crop parameters, we silently move the upper left
++ * corner up and/or left to make it so, simultaneously increasing the region
++ * dimensions to keep the lower right crop corner unchanged.  (Thus, the
++ * output image covers at least the requested region, but may cover more.)
++ * The adjustment of the region dimensions may be optionally disabled.
++ *
++ * We also provide a lossless-resize option, which is kind of a lossless-crop
++ * operation in the DCT coefficient block domain - it discards higher-order
++ * coefficients and losslessly preserves lower-order coefficients of a
++ * sub-block.
++ *
++ * Rotate/flip transform, resize, and crop can be requested together in a
++ * single invocation.  The crop is applied last --- that is, the crop region
++ * is specified in terms of the destination image after transform/resize.
++ *
++ * We also offer a "force to grayscale" option, which simply discards the
++ * chrominance channels of a YCbCr image.  This is lossless in the sense that
++ * the luminance channel is preserved exactly.  It's not the same kind of
++ * thing as the rotate/flip transformations, but it's convenient to handle it
++ * as part of this package, mainly because the transformation routines have to
++ * be aware of the option to know how many components to work on.
++ */
++
++
++/* Short forms of external names for systems with brain-damaged linkers. */
++
++#ifdef NEED_SHORT_EXTERNAL_NAMES
++#define jtransform_parse_crop_spec	jTrParCrop
++#define jtransform_request_workspace	jTrRequest
++#define jtransform_adjust_parameters	jTrAdjust
++#define jtransform_execute_transform	jTrExec
++#define jtransform_perfect_transform	jTrPerfect
++#define jcopy_markers_setup		jCMrkSetup
++#define jcopy_markers_execute		jCMrkExec
++#endif /* NEED_SHORT_EXTERNAL_NAMES */
++
++
++/*
++ * Codes for supported types of image transformations.
++ */
++
++typedef enum {
++	JXFORM_NONE,		/* no transformation */
++	JXFORM_FLIP_H,		/* horizontal flip */
++	JXFORM_FLIP_V,		/* vertical flip */
++	JXFORM_TRANSPOSE,	/* transpose across UL-to-LR axis */
++	JXFORM_TRANSVERSE,	/* transpose across UR-to-LL axis */
++	JXFORM_ROT_90,		/* 90-degree clockwise rotation */
++	JXFORM_ROT_180,		/* 180-degree rotation */
++	JXFORM_ROT_270		/* 270-degree clockwise (or 90 ccw) */
++} JXFORM_CODE;
++
++/*
++ * Codes for crop parameters, which can individually be unspecified,
++ * positive or negative for xoffset or yoffset,
++ * positive or forced for width or height.
++ */
++
++typedef enum {
++        JCROP_UNSET,
++        JCROP_POS,
++        JCROP_NEG,
++        JCROP_FORCE
++} JCROP_CODE;
++
++/*
++ * Transform parameters struct.
++ * NB: application must not change any elements of this struct after
++ * calling jtransform_request_workspace.
++ */
++
++typedef struct {
++  /* Options: set by caller */
++  JXFORM_CODE transform;	/* image transform operator */
++  boolean perfect;		/* if TRUE, fail if partial MCUs are requested */
++  boolean trim;			/* if TRUE, trim partial MCUs as needed */
++  boolean force_grayscale;	/* if TRUE, convert color image to grayscale */
++  boolean crop;			/* if TRUE, crop source image */
++  boolean slow_hflip;  /* For best performance, the JXFORM_FLIP_H transform
++                          normally modifies the source coefficients in place.
++                          Setting this to TRUE will instead use a slower,
++                          double-buffered algorithm, which leaves the source
++                          coefficients in tact (necessary if other transformed
++                          images must be generated from the same set of
++                          coefficients. */
++
++  /* Crop parameters: application need not set these unless crop is TRUE.
++   * These can be filled in by jtransform_parse_crop_spec().
++   */
++  JDIMENSION crop_width;	/* Width of selected region */
++  JCROP_CODE crop_width_set;	/* (forced disables adjustment) */
++  JDIMENSION crop_height;	/* Height of selected region */
++  JCROP_CODE crop_height_set;	/* (forced disables adjustment) */
++  JDIMENSION crop_xoffset;	/* X offset of selected region */
++  JCROP_CODE crop_xoffset_set;	/* (negative measures from right edge) */
++  JDIMENSION crop_yoffset;	/* Y offset of selected region */
++  JCROP_CODE crop_yoffset_set;	/* (negative measures from bottom edge) */
++
++  /* Internal workspace: caller should not touch these */
++  int num_components;		/* # of components in workspace */
++  jvirt_barray_ptr * workspace_coef_arrays; /* workspace for transformations */
++  JDIMENSION output_width;	/* cropped destination dimensions */
++  JDIMENSION output_height;
++  JDIMENSION x_crop_offset;	/* destination crop offsets measured in iMCUs */
++  JDIMENSION y_crop_offset;
++  int iMCU_sample_width;	/* destination iMCU size */
++  int iMCU_sample_height;
++} jpeg_transform_info;
++
++
++#if TRANSFORMS_SUPPORTED
++
++/* Parse a crop specification (written in X11 geometry style) */
++EXTERN(boolean) jtransform_parse_crop_spec
++	JPP((jpeg_transform_info *info, const char *spec));
++/* Request any required workspace */
++EXTERN(boolean) jtransform_request_workspace
++	JPP((j_decompress_ptr srcinfo, jpeg_transform_info *info));
++/* Adjust output image parameters */
++EXTERN(jvirt_barray_ptr *) jtransform_adjust_parameters
++	JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	     jvirt_barray_ptr *src_coef_arrays,
++	     jpeg_transform_info *info));
++/* Execute the actual transformation, if any */
++EXTERN(void) jtransform_execute_transform
++	JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	     jvirt_barray_ptr *src_coef_arrays,
++	     jpeg_transform_info *info));
++/* Determine whether lossless transformation is perfectly
++ * possible for a specified image and transformation.
++ */
++EXTERN(boolean) jtransform_perfect_transform
++	JPP((JDIMENSION image_width, JDIMENSION image_height,
++	     int MCU_width, int MCU_height,
++	     JXFORM_CODE transform));
++
++/* jtransform_execute_transform used to be called
++ * jtransform_execute_transformation, but some compilers complain about
++ * routine names that long.  This macro is here to avoid breaking any
++ * old source code that uses the original name...
++ */
++#define jtransform_execute_transformation	jtransform_execute_transform
++
++#endif /* TRANSFORMS_SUPPORTED */
++
++
++/*
++ * Support for copying optional markers from source to destination file.
++ */
++
++typedef enum {
++	JCOPYOPT_NONE,		/* copy no optional markers */
++	JCOPYOPT_COMMENTS,	/* copy only comment (COM) markers */
++	JCOPYOPT_ALL		/* copy all optional markers */
++} JCOPY_OPTION;
++
++#define JCOPYOPT_DEFAULT  JCOPYOPT_COMMENTS	/* recommended default */
++
++/* Setup decompression object to save desired markers in memory */
++EXTERN(void) jcopy_markers_setup
++	JPP((j_decompress_ptr srcinfo, JCOPY_OPTION option));
++/* Copy markers saved in the given source object to the destination object */
++EXTERN(void) jcopy_markers_execute
++	JPP((j_decompress_ptr srcinfo, j_compress_ptr dstinfo,
++	     JCOPY_OPTION option));
+--- freeimage.orig/genfipsrclist.sh
++++ freeimage/genfipsrclist.sh
+@@ -13,7 +13,7 @@ for DIR in $DIRLIST; do
+ 		egrep 'RelativePath=.*\.(c|cpp)' $DIR/*.2008.vcproj | cut -d'"' -f2 | tr '\\' '/' | awk '{print "'$DIR'/"$0}' | tr '\r\n' '  ' | tr -s ' ' >> fipMakefile.srcs
+ 	fi
+ done
+-echo -n ' Source/LibJPEG/transupp.c' >> fipMakefile.srcs
++echo -n ' jpeg/transupp.c' >> fipMakefile.srcs
+ echo >> fipMakefile.srcs
+ 
+ echo -n "INCLUDE =" >> fipMakefile.srcs

Reply to: