[Date Prev][Date Next] [Thread Prev][Thread Next] [Date Index] [Thread Index]

Re: 2.6.7



On Thu, Jun 17, 2004 at 04:09:44PM +0200, Francesco P. Lovergine wrote:
> On Thu, Jun 17, 2004 at 03:17:28PM +0200, Christoph Hellwig wrote:
> > On Thu, Jun 17, 2004 at 02:29:56PM +0200, Francesco P. Lovergine wrote:
> > > pnpide_init has no args indeed. AFAIK subsequent section should be removed:
> > 
> > I don't think it should just be removed but rather reworked.  I'll look
> > into it.
> > 
> 
> BTW, swsusp does not compile for a target missed:
> 
>   CC      kernel/power/pm.o
>   make[3]: *** No rule to make target `kernel/power/swsusp-core.o',
>   needed by `kernel/power/built-in.o'.  Stop.
>   make[2]: *** [kernel/power] Error 2
>   make[1]: *** [kernel] Error 2
>   make[1]: Leaving directory `/home/frankie/kernel-source-2.6.7'
>   make: *** [stamp-build] Error 2
> 
> It was ok in 2.6 if I remember right.

Hmm, the kernel/power/Makefile changes are exactly the same as in the
2.6.6 patch.  A crap.  The file is missing thanks to bk diffs which
doesn't pick up new files.  Please move the sources below to
kernel/power/swsusp-core.c:


/*
 * linux/kernel/power/swsusp-core.c
 *
 * This file provides symbols required by swusup-arch.
 *
 * Copyright (C) 1998-2001 Gabor Kuti <seasons@fornax.hu>
 * Copyright (C) 1998,2001-2004 Pavel Machek <pavel@suse.cz>
 * Copyright (C) 2004 Herbert Xu <herbert@gondor.apana.org.au>
 *
 * This file is licensed under the GPLv2.
 */

#include <linux/module.h>
#include <linux/mm.h>
#include <linux/suspend.h>
#include <linux/smp_lock.h>
#include <linux/file.h>
#include <linux/utsname.h>
#include <linux/version.h>
#include <linux/delay.h>
#include <linux/reboot.h>
#include <linux/bitops.h>
#include <linux/vt_kern.h>
#include <linux/kbd_kern.h>
#include <linux/keyboard.h>
#include <linux/spinlock.h>
#include <linux/genhd.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/swap.h>
#include <linux/pm.h>
#include <linux/device.h>
#include <linux/buffer_head.h>
#include <linux/swapops.h>
#include <linux/bootmem.h>
#include <linux/console.h>
#include <linux/highmem.h>
#include <linux/init.h>
#include <linux/cpumask.h>
#include <linux/fs.h>

#include <asm/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <asm/io.h>

#include "power.h"
#include "swsusp.h"

/* References to section boundaries */
extern char __nosave_begin, __nosave_end;

extern int is_head_of_free_region(struct page *);

/* Locks */
spinlock_t suspend_pagedir_lock __nosavedata = SPIN_LOCK_UNLOCKED;

/* Variables to be preserved over suspend */
static int pagedir_order_check;
static int nr_copy_pages_check;

dev_t swsusp_resume_device;
EXPORT_SYMBOL(swsusp_resume_device);

/* Local variables that should not be affected by save */
unsigned int nr_copy_pages __nosavedata = 0;
EXPORT_SYMBOL(nr_copy_pages);

/* Suspend pagedir is allocated before final copy, therefore it
   must be freed after resume 

   Warning: this is evil. There are actually two pagedirs at time of
   resume. One is "pagedir_save", which is empty frame allocated at
   time of suspend, that must be freed. Second is "pagedir_nosave", 
   allocated at time of resume, that travels through memory not to
   collide with anything.

   Warning: this is even more evil than it seems. Pagedirs this file
   talks about are completely different from page directories used by
   MMU hardware.
 */
suspend_pagedir_t *pagedir_nosave __nosavedata = NULL;
EXPORT_SYMBOL(pagedir_nosave);
suspend_pagedir_t *pagedir_save;
EXPORT_SYMBOL(pagedir_save);
int pagedir_order __nosavedata = 0;
EXPORT_SYMBOL(pagedir_order);

/*
 * XXX: We try to keep some more pages free so that I/O operations succeed
 * without paging. Might this be more?
 */
#define PAGES_FOR_IO	512

const char name_suspend[] = "Suspend Machine: ";
EXPORT_SYMBOL(name_suspend);
const char name_resume[] = "Resume Machine: ";
EXPORT_SYMBOL(name_resume);

/*
 * Saving part...
 */

static __inline__ int fill_suspend_header(struct suspend_header *sh)
{
	memset((char *)sh, 0, sizeof(*sh));

	sh->version_code = LINUX_VERSION_CODE;
	sh->num_physpages = num_physpages;
	strncpy(sh->machine, system_utsname.machine, 8);
	strncpy(sh->version, system_utsname.version, 20);
	/* FIXME: Is this bogus? --RR */
	sh->num_cpus = num_online_cpus();
	sh->page_size = PAGE_SIZE;
	sh->suspend_pagedir = pagedir_nosave;
	BUG_ON (pagedir_save != pagedir_nosave);
	sh->num_pbes = nr_copy_pages;
	/* TODO: needed? mounted fs' last mounted date comparison
	 * [so they haven't been mounted since last suspend.
	 * Maybe it isn't.] [we'd need to do this for _all_ fs-es]
	 */
	return 0;
}

/* We memorize in swapfile_used what swap devices are used for suspension */
#define SWAPFILE_UNUSED    0
#define SWAPFILE_SUSPEND   1	/* This is the suspending device */
#define SWAPFILE_IGNORED   2	/* Those are other swap devices ignored for suspension */

static unsigned short swapfile_used[MAX_SWAPFILES];
static unsigned short root_swap;
#define MARK_SWAP_SUSPEND 0
#define MARK_SWAP_RESUME 2

static void mark_swapfiles(swp_entry_t prev, int mode)
{
	swp_entry_t entry;
	union diskpage *cur;
	struct page *page;

	if (root_swap == 0xFFFF)  /* ignored */
		return;

	page = alloc_page(GFP_ATOMIC);
	if (!page)
		panic("Out of memory in mark_swapfiles");
	cur = page_address(page);
	/* XXX: this is dirty hack to get first page of swap file */
	entry = swp_entry(root_swap, 0);
	rw_swap_page_sync(READ, entry, page);

	if (mode == MARK_SWAP_RESUME) {
	  	if (!memcmp("S1",cur->swh.magic.magic,2))
		  	memcpy(cur->swh.magic.magic,"SWAP-SPACE",10);
		else if (!memcmp("S2",cur->swh.magic.magic,2))
			memcpy(cur->swh.magic.magic,"SWAPSPACE2",10);
		else printk("%sUnable to find suspended-data signature (%.10s - misspelled?\n", 
		      	name_resume, cur->swh.magic.magic);
	} else {
	  	if ((!memcmp("SWAP-SPACE",cur->swh.magic.magic,10)))
		  	memcpy(cur->swh.magic.magic,"S1SUSP....",10);
		else if ((!memcmp("SWAPSPACE2",cur->swh.magic.magic,10)))
			memcpy(cur->swh.magic.magic,"S2SUSP....",10);
		else panic("\nSwapspace is not swapspace (%.10s)\n", cur->swh.magic.magic);
		cur->link.next = prev; /* prev is the first/last swap page of the resume area */
		/* link.next lies *no more* in last 4/8 bytes of magic */
	}
	rw_swap_page_sync(WRITE, entry, page);
	__free_page(page);
}
 
/*
 * Check whether the swap device is the specified resume
 * device, irrespective of whether they are specified by
 * identical names.
 *
 * (Thus, device inode aliasing is allowed.  You can say /dev/hda4
 * instead of /dev/ide/host0/bus0/target0/lun0/part4 [if using devfs]
 * and they'll be considered the same device.  This is *necessary* for
 * devfs, since the resume code can only recognize the form /dev/hda4,
 * but the suspend code would see the long name.)
 */
static int is_resume_device(const struct swap_info_struct *swap_info)
{
	struct inode *inode = swap_info->swap_file->f_dentry->d_inode;

	return S_ISBLK(inode->i_mode) && resume_device == inode->i_rdev;
}

static void read_swapfiles(void) /* This is called before saving image */
{
	int i;
	
	root_swap = 0xFFFF;
	
	swap_list_lock();
	for(i=0; i<MAX_SWAPFILES; i++) {
		if (swap_info[i].flags == 0) {
			swapfile_used[i]=SWAPFILE_UNUSED;
		} else {
			if (!swsusp_resume_device) {
	    			printk(KERN_WARNING "resume= option should be used to set suspend device" );
				if(root_swap == 0xFFFF) {
					swapfile_used[i] = SWAPFILE_SUSPEND;
					root_swap = i;
				} else
					swapfile_used[i] = SWAPFILE_IGNORED;				  
			} else {
	  			/* we ignore all swap devices that are not the resume_file */
				if (is_resume_device(&swap_info[i])) {
					swapfile_used[i] = SWAPFILE_SUSPEND;
					root_swap = i;
				} else {
				  	swapfile_used[i] = SWAPFILE_IGNORED;
				}
			}
		}
	}
	swap_list_unlock();
}

static void lock_swapdevices(void) /* This is called after saving image so modification
				      will be lost after resume... and that's what we want. */
{
	int i;

	swap_list_lock();
	for(i = 0; i< MAX_SWAPFILES; i++)
		if(swapfile_used[i] == SWAPFILE_IGNORED) {
			swap_info[i].flags ^= 0xFF; /* we make the device unusable. A new call to
						       lock_swapdevices can unlock the devices. */
		}
	swap_list_unlock();
}

/**
 *    write_suspend_image - Write entire image to disk.
 *
 *    After writing suspend signature to the disk, suspend may no
 *    longer fail: we have ready-to-run image in swap, and rollback
 *    would happen on next reboot -- corrupting data.
 *
 *    Note: The buffer we allocate to use to write the suspend header is
 *    not freed; its not needed since the system is going down anyway
 *    (plus it causes an oops and I'm lazy^H^H^H^Htoo busy).
 */
static int write_suspend_image(void)
{
	int i;
	swp_entry_t entry, prev = { 0 };
	int nr_pgdir_pages = SUSPEND_PD_PAGES(nr_copy_pages);
	union diskpage *cur,  *buffer = (union diskpage *)get_zeroed_page(GFP_ATOMIC);
	unsigned long address;
	struct page *page;

	if (!buffer)
		return -ENOMEM;

	printk( "Writing data to swap (%d pages): ", nr_copy_pages );
	for (i=0; i<nr_copy_pages; i++) {
		if (!(i%100))
			printk( "." );
		if (!(entry = get_swap_page()).val)
			panic("\nNot enough swapspace when writing data" );
		
		if (swapfile_used[swp_type(entry)] != SWAPFILE_SUSPEND)
			panic("\nPage %d: not enough swapspace on suspend device", i );
	    
		address = (pagedir_nosave+i)->address;
		page = virt_to_page(address);
		rw_swap_page_sync(WRITE, entry, page);
		(pagedir_nosave+i)->swap_address = entry;
	}
	printk( "|\n" );
	printk( "Writing pagedir (%d pages): ", nr_pgdir_pages);
	for (i=0; i<nr_pgdir_pages; i++) {
		cur = (union diskpage *)((char *) pagedir_nosave)+i;
		BUG_ON ((char *) cur != (((char *) pagedir_nosave) + i*PAGE_SIZE));
		printk( "." );
		if (!(entry = get_swap_page()).val) {
			printk(KERN_CRIT "Not enough swapspace when writing pgdir\n" );
			panic("Don't know how to recover");
			free_page((unsigned long) buffer);
			return -ENOSPC;
		}

		if(swapfile_used[swp_type(entry)] != SWAPFILE_SUSPEND)
			panic("\nNot enough swapspace for pagedir on suspend device" );

		BUG_ON (sizeof(swp_entry_t) != sizeof(long));
		BUG_ON (PAGE_SIZE % sizeof(struct pbe));

		cur->link.next = prev;				
		page = virt_to_page((unsigned long)cur);
		rw_swap_page_sync(WRITE, entry, page);
		prev = entry;
	}
	printk("H");
	BUG_ON (sizeof(struct suspend_header) > PAGE_SIZE-sizeof(swp_entry_t));
	BUG_ON (sizeof(union diskpage) != PAGE_SIZE);
	BUG_ON (sizeof(struct link) != PAGE_SIZE);
	if (!(entry = get_swap_page()).val)
		panic( "\nNot enough swapspace when writing header" );
	if (swapfile_used[swp_type(entry)] != SWAPFILE_SUSPEND)
		panic("\nNot enough swapspace for header on suspend device" );

	cur = (void *) buffer;
	if (fill_suspend_header(&cur->sh))
		BUG();		/* Not a BUG_ON(): we want fill_suspend_header to be called, always */
		
	cur->link.next = prev;

	page = virt_to_page((unsigned long)cur);
	rw_swap_page_sync(WRITE, entry, page);
	prev = entry;

	printk( "S" );
	mark_swapfiles(prev, MARK_SWAP_SUSPEND);
	printk( "|\n" );

	MDELAY(1000);
	return 0;
}

#ifdef CONFIG_HIGHMEM
struct highmem_page {
	char *data;
	struct page *page;
	struct highmem_page *next;
};

struct highmem_page *highmem_copy = NULL;

static int save_highmem_zone(struct zone *zone)
{
	unsigned long zone_pfn;
	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
		struct page *page;
		struct highmem_page *save;
		void *kaddr;
		unsigned long pfn = zone_pfn + zone->zone_start_pfn;
		int chunk_size;

		if (!(pfn%1000))
			printk(".");
		if (!pfn_valid(pfn))
			continue;
		page = pfn_to_page(pfn);
		/*
		 * This condition results from rvmalloc() sans vmalloc_32()
		 * and architectural memory reservations. This should be
		 * corrected eventually when the cases giving rise to this
		 * are better understood.
		 */
		if (PageReserved(page)) {
			printk("highmem reserved page?!\n");
			continue;
		}
		if ((chunk_size = is_head_of_free_region(page))) {
			pfn += chunk_size - 1;
			zone_pfn += chunk_size - 1;
			continue;
		}
		save = kmalloc(sizeof(struct highmem_page), GFP_ATOMIC);
		if (!save)
			return -ENOMEM;
		save->next = highmem_copy;
		save->page = page;
		save->data = (void *) get_zeroed_page(GFP_ATOMIC);
		if (!save->data) {
			kfree(save);
			return -ENOMEM;
		}
		kaddr = kmap_atomic(page, KM_USER0);
		memcpy(save->data, kaddr, PAGE_SIZE);
		kunmap_atomic(kaddr, KM_USER0);
		highmem_copy = save;
	}
	return 0;
}

static int save_highmem(void)
{
	struct zone *zone;
	int res = 0;
	for_each_zone(zone) {
		if (is_highmem(zone))
			res = save_highmem_zone(zone);
		if (res)
			return res;
	}
	return 0;
}

static int restore_highmem(void)
{
	while (highmem_copy) {
		struct highmem_page *save = highmem_copy;
		void *kaddr;
		highmem_copy = save->next;

		kaddr = kmap_atomic(save->page, KM_USER0);
		memcpy(kaddr, save->data, PAGE_SIZE);
		kunmap_atomic(kaddr, KM_USER0);
		free_page((long) save->data);
		kfree(save);
	}
	return 0;
}
#endif

static int pfn_is_nosave(unsigned long pfn)
{
	unsigned long nosave_begin_pfn = __pa(&__nosave_begin) >> PAGE_SHIFT;
	unsigned long nosave_end_pfn = PAGE_ALIGN(__pa(&__nosave_end)) >> PAGE_SHIFT;
	return (pfn >= nosave_begin_pfn) && (pfn < nosave_end_pfn);
}

/* if *pagedir_p != NULL it also copies the counted pages */
static int count_and_copy_zone(struct zone *zone, struct pbe **pagedir_p)
{
	unsigned long zone_pfn, chunk_size, nr_copy_pages = 0;
	struct pbe *pbe = *pagedir_p;
	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
		struct page *page;
		unsigned long pfn = zone_pfn + zone->zone_start_pfn;

		if (!(pfn%1000))
			printk(".");
		if (!pfn_valid(pfn))
			continue;
		page = pfn_to_page(pfn);
		BUG_ON(PageReserved(page) && PageNosave(page));
		if (PageNosave(page))
			continue;
		if (PageReserved(page) && pfn_is_nosave(pfn)) {
			PRINTK("[nosave pfn 0x%lx]", pfn);
			continue;
		}
		if ((chunk_size = is_head_of_free_region(page))) {
			pfn += chunk_size - 1;
			zone_pfn += chunk_size - 1;
			continue;
		}
		nr_copy_pages++;
		if (!pbe)
			continue;
		pbe->orig_address = (long) page_address(page);
		copy_page((void *)pbe->address, (void *)pbe->orig_address);
		pbe++;
	}
	*pagedir_p = pbe;
	return nr_copy_pages;
}

static int count_and_copy_data_pages(struct pbe *pagedir_p)
{
	int nr_copy_pages = 0;
	struct zone *zone;
	for_each_zone(zone) {
		if (!is_highmem(zone))
			nr_copy_pages += count_and_copy_zone(zone, &pagedir_p);
	}
	return nr_copy_pages;
}

static void free_suspend_pagedir_zone(struct zone *zone, unsigned long pagedir)
{
	unsigned long zone_pfn, pagedir_end, pagedir_pfn, pagedir_end_pfn;
	pagedir_end = pagedir + (PAGE_SIZE << pagedir_order);
	pagedir_pfn = __pa(pagedir) >> PAGE_SHIFT;
	pagedir_end_pfn = __pa(pagedir_end) >> PAGE_SHIFT;
	for (zone_pfn = 0; zone_pfn < zone->spanned_pages; ++zone_pfn) {
		struct page *page;
		unsigned long pfn = zone_pfn + zone->zone_start_pfn;
		if (!pfn_valid(pfn))
			continue;
		page = pfn_to_page(pfn);
		if (!TestClearPageNosave(page))
			continue;
		else if (pfn >= pagedir_pfn && pfn < pagedir_end_pfn)
			continue;
		__free_page(page);
	}
}

static void free_suspend_pagedir(unsigned long this_pagedir)
{
	struct zone *zone;
	for_each_zone(zone) {
		if (!is_highmem(zone))
			free_suspend_pagedir_zone(zone, this_pagedir);
	}
	free_pages(this_pagedir, pagedir_order);
}

static suspend_pagedir_t *create_suspend_pagedir(int nr_copy_pages)
{
	int i;
	suspend_pagedir_t *pagedir;
	struct pbe *p;
	struct page *page;

	pagedir_order = get_bitmask_order(SUSPEND_PD_PAGES(nr_copy_pages));

	p = pagedir = (suspend_pagedir_t *)__get_free_pages(GFP_ATOMIC | __GFP_COLD, pagedir_order);
	if (!pagedir)
		return NULL;

	page = virt_to_page(pagedir);
	for(i=0; i < 1<<pagedir_order; i++)
		SetPageNosave(page++);
		
	while(nr_copy_pages--) {
		p->address = get_zeroed_page(GFP_ATOMIC | __GFP_COLD);
		if (!p->address) {
			free_suspend_pagedir((unsigned long) pagedir);
			return NULL;
		}
		SetPageNosave(virt_to_page(p->address));
		p->orig_address = 0;
		p++;
	}
	return pagedir;
}

static int suspend_prepare_image(void)
{
	struct sysinfo i;
	unsigned int nr_needed_pages = 0;

	pagedir_nosave = NULL;
	printk( "/critical section: ");
#ifdef CONFIG_HIGHMEM
	printk( "handling highmem" );
	if (save_highmem()) {
		printk(KERN_CRIT "%sNot enough free pages for highmem\n", name_suspend);
		return -ENOMEM;
	}
	printk(", ");
#endif

	printk("counting pages to copy" );
	drain_local_pages();
	nr_copy_pages = count_and_copy_data_pages(NULL);
	nr_needed_pages = nr_copy_pages + PAGES_FOR_IO;
	
	printk(" (pages needed: %d+%d=%d free: %d)\n",nr_copy_pages,PAGES_FOR_IO,nr_needed_pages,nr_free_pages());
	if(nr_free_pages() < nr_needed_pages) {
		printk(KERN_CRIT "%sCouldn't get enough free pages, on %d pages short\n",
		       name_suspend, nr_needed_pages-nr_free_pages());
		root_swap = 0xFFFF;
		return -ENOMEM;
	}
	si_swapinfo(&i);	/* FIXME: si_swapinfo(&i) returns all swap devices information.
				   We should only consider resume_file. */
	if (i.freeswap < nr_needed_pages)  {
		printk(KERN_CRIT "%sThere's not enough swap space available, on %ld pages short\n",
		       name_suspend, nr_needed_pages-i.freeswap);
		return -ENOMEM;
	}

	PRINTK( "Alloc pagedir\n" ); 
	pagedir_save = pagedir_nosave = create_suspend_pagedir(nr_copy_pages);
	if (!pagedir_nosave) {
		/* Pagedir is big, one-chunk allocation. It is easily possible for this allocation to fail */
		printk(KERN_CRIT "%sCouldn't allocate continuous pagedir\n", name_suspend);
		return -ENOMEM;
	}
	nr_copy_pages_check = nr_copy_pages;
	pagedir_order_check = pagedir_order;

	drain_local_pages();	/* During allocating of suspend pagedir, new cold pages may appear. Kill them */
	if (nr_copy_pages != count_and_copy_data_pages(pagedir_nosave))	/* copy */
		BUG();

	/*
	 * End of critical section. From now on, we can write to memory,
	 * but we should not touch disk. This specially means we must _not_
	 * touch swap space! Except we must write out our image of course.
	 */

	printk( "critical section/: done (%d pages copied)\n", nr_copy_pages );
	return 0;
}

static void suspend_save_image(void)
{
	device_resume();

	lock_swapdevices();
	write_suspend_image();
	lock_swapdevices();	/* This will unlock ignored swap devices since writing is finished */

	/* It is important _NOT_ to umount filesystems at this point. We want
	 * them synced (in case something goes wrong) but we DO not want to mark
	 * filesystem clean: it is not. (And it does not matter, if we resume
	 * correctly, we'll mark system clean, anyway.)
	 */
}

static void suspend_power_down(void)
{
	extern int C_A_D;
	C_A_D = 0;
	printk(KERN_EMERG "%s%s Trying to power down.\n", name_suspend, TEST_SWSUSP ? "Disable TEST_SWSUSP. NOT ": "");
#ifdef CONFIG_VT
	PRINTK(KERN_EMERG "shift_state: %04x\n", shift_state);
	mdelay(1000);
	if (TEST_SWSUSP ^ (!!(shift_state & (1 << KG_CTRL))))
		machine_restart(NULL);
	else
#endif
	{
		device_shutdown();
		machine_power_off();
	}

	printk(KERN_EMERG "%sProbably not capable for powerdown. System halted.\n", name_suspend);
	machine_halt();
	while (1);
	/* NOTREACHED */
}

/*
 * Magic happens here
 */

asmlinkage void do_magic_resume_1(void)
{
	barrier();
	mb();
	spin_lock_irq(&suspend_pagedir_lock);	/* Done to disable interrupts */ 

	device_power_down(4);
	PRINTK( "Waiting for DMAs to settle down...\n");
	mdelay(1000);	/* We do not want some readahead with DMA to corrupt our memory, right?
			   Do it with disabled interrupts for best effect. That way, if some
			   driver scheduled DMA, we have good chance for DMA to finish ;-). */
}

EXPORT_SYMBOL(do_magic_resume_1);

asmlinkage void do_magic_resume_2(void)
{
	BUG_ON (nr_copy_pages_check != nr_copy_pages);
	BUG_ON (pagedir_order_check != pagedir_order);

	__flush_tlb_global();		/* Even mappings of "global" things (vmalloc) need to be fixed */

	PRINTK( "Freeing prev allocated pagedir\n" );
	free_suspend_pagedir((unsigned long) pagedir_save);

#ifdef CONFIG_HIGHMEM
	printk( "Restoring highmem\n" );
	restore_highmem();
#endif
	printk("done, devices\n");

	device_power_up();
	spin_unlock_irq(&suspend_pagedir_lock);
	device_resume();

	/* Fixme: this is too late; we should do this ASAP to avoid "infinite reboots" problem */
	PRINTK( "Fixing swap signatures... " );
	mark_swapfiles(((swp_entry_t) {0}), MARK_SWAP_RESUME);
	PRINTK( "ok\n" );

#ifdef SUSPEND_CONSOLE
	acquire_console_sem();
	update_screen(fg_console);
	release_console_sem();
#endif
}

EXPORT_SYMBOL(do_magic_resume_2);

/* do_magic() is implemented in arch/?/kernel/suspend_asm.S, and basically does:

	if (!resume) {
		do_magic_suspend_1();
		save_processor_state();
		SAVE_REGISTERS
		do_magic_suspend_2();
		return;
	}
	GO_TO_SWAPPER_PAGE_TABLES
	do_magic_resume_1();
	COPY_PAGES_BACK
	RESTORE_REGISTERS
	restore_processor_state();
	do_magic_resume_2();

 */

asmlinkage void do_magic_suspend_1(void)
{
	mb();
	barrier();
	BUG_ON(in_atomic());
	spin_lock_irq(&suspend_pagedir_lock);
}

EXPORT_SYMBOL(do_magic_suspend_1);

asmlinkage void do_magic_suspend_2(void)
{
	int is_problem;
	read_swapfiles();
	device_power_down(4);
	is_problem = suspend_prepare_image();
	device_power_up();
	spin_unlock_irq(&suspend_pagedir_lock);
	if (!is_problem) {
		kernel_fpu_end();	/* save_processor_state() does kernel_fpu_begin, and we need to revert it in order to pass in_atomic() checks */
		BUG_ON(in_atomic());
		suspend_save_image();
		suspend_power_down();	/* FIXME: if suspend_power_down is commented out, console is lost after few suspends ?! */
	}

	printk(KERN_EMERG "%sSuspend failed, trying to recover...\n", name_suspend);
	MDELAY(1000); /* So user can wait and report us messages if armageddon comes :-) */

	barrier();
	mb();
	spin_lock_irq(&suspend_pagedir_lock);	/* Done to disable interrupts */ 
	mdelay(1000);

	free_pages((unsigned long) pagedir_nosave, pagedir_order);
	spin_unlock_irq(&suspend_pagedir_lock);

	device_resume();
	PRINTK( "Fixing swap signatures... " );
	mark_swapfiles(((swp_entry_t) {0}), MARK_SWAP_RESUME);
	PRINTK( "ok\n" );
}

EXPORT_SYMBOL(do_magic_suspend_2);



Reply to: