Comparing the performance of the NaN-
toolbox on Matlab and on Octave with
OpenMP enabled.

Alois Schloegl,
e-mail: alois.schloegl@ist.ac.at

Institute for Science and Technology Austria

27 Jun 2011

Introduction

The aim of the is work is testing whether the use of OpenMP [1] can be beneficial to the NaN-toolbox
for statistics and machine learning [2], which relies on some core functions that are implemented in C
and can be used through the mex-interface. Moreover, in the past Octave did not perform as well as
Matlab [3]. It is the aim to investigate which platform provides the best performance for resource
intensive computations.

Method

Hardware: 12 Core Processore (2 x 6-core AMD Opteron)

Operating System: Debian Squeeze AMD64

Software:
Octave 3.4.1 compiled from sources with the option “openmp” enabled.
Matlab 7.11 2010b

Two algorithms from the NaN-toolbox [1] were used for performance testing. SUMSKIPNAN_MEX
sums the columns of a matrix, and COVM_MEX computes the covariance matrix. The algorithms were
modified for the use with OpenMP. Matlab supports parallelization, however, in order to be able of
using multiple cores, Octave must be compiled with the flag —enable-openmp.

The timing was tested with the internal clock (tic,toc) and cputime functions of Matlab and Octave.
Moreover, top was used to check whether some other processes took significant CPU time; no
signficant CPU usage from other processes were observed. The script for testing the performance is
shown below.



% Generate Test data

%
y = randn(le7,32);

flag=1;
N=10;

tl=repmat(N,2);

t2=repmat(N,2);

for k=1:N;
tic;t=cputime();
[s,n]=sumskipnan mex(y,1);
tl(k,1)=cputime()-t; tl(k,2)=toc;

tic;t=cputime();
[c,n]=covm mex(y,[],flag);
t2(k,1l)=cputime()-t; t2(k,2)=toc;

end;

exp(-diff(log(mean(tl))))

Results

%

%

sum of columns

covariance matrix

Table 1: Performance of Octave-3.4.1 with OpenMP on scicompO01left

Octave| sumskipnan sumskipnan covm covm
run| cputime[s] realtime[s] cputime[s] realtime [s]

1 3.5632 0.300 102.250 8.540

2 3.548 0.299 101.680 8.496

3 3.488 0.292 101.510 8.476

4 3.496 0.293 100.780 8.416

5 3.496 0.292 100.830 8.420

6 3.544 0.296 101.760 8.493

7 3.500 0.294 100.690 8.406

8 3.540 0.297 101.750 8.494

9 3.516 0.293 101.020 8.436

10 3.520 0.298 100.430 8.385
mean 3.518 0.295 101.270 8.456
s.d. 0.022 0.003 0.596 0.050




Table 2: Performance of Matlab 7.11 on scicomp01left

Matlab| sumskipnan sumskipnan covm covm
run| cputime[s] realtime[s] cputime[s] realtime[s]

1 4.440 0.384 132.830 11.101

2 4.430 0.382 131.340 10.962

3 4.450 0.381 132.130 11.028

4 4.430 0.381 131.820 11.012

5 4.440 0.381 132.120 11.033

6 4.440 0.382 132.740 11.081

7 4.450 0.382 132.420 11.060

8 4.420 0.381 131.080 10.939

9 4.430 0.381 131.830 11.007

10 4.440 0.381 131.660 10.999
mean 4.437 0.382 131.997 11.022
s.d. 0.009 0.001 0.568 0.050

Table 3: Speedup factor by using OpenMP. The speed up factor was computed as the ratio betweeen
the average time needed and the average CPU time.

Machine Software Test CPUTIME Actual Speed up
time [s]
scicomp0Olleft Octave SUMSKIPNAN 3.518 0.295/11.912
scicompOlleft Octave COVM 101.270 8.456|11.976
scicompOlleft Matlab SUMSKIPNAN 4.437 0.382/11.624
scicompOlleft Matlab COVM 131.997 11.022/11.976

Table 1 and Table 2 show the results for the N=10 repetitions,its mean and standard deviation
for Octave 3.4.1 and Matlab 7.11, resp. The average results are summarized in Table 3. An speed-up
factor (realtime over cputime) of almost 12 is shown for all results. For the same test, Octave was about
30 % faster than Matlab.

Discussion

Observing CPU load using “top” showed that the 12 Processor cores were used. The speedup of a
factor of almost 12 could be achieved for both algorithms (sumskipnan and covm) and both platforms
(Octave and Matlab). This shows that the use of OpenMP within Octave can be a significant advantage
in shared memory systems.

Moreover, we can see that Octave is about 30% faster than Matlab in the present test. This
improvement has been observed only when “openmp” was enabled within Octave. Without openmp,
the improvement has not be observed (results are not shown here).



The present test routines (summing of a matrix and computing the covariance matrix) are important
functions for statistics, machine learning and signal processing. They are used to train statistical
classifiers, like LDA, QDA and RDA methods, and compute multivariate covariance functions.

References

[1] The OpenMP® API specification for parallel programming http://openmp.org/wp/

[2] The NaN-toolbox v2.0: A statistics and machine learning toolbox for Octave and Matlab® for data
with and w/o MISSING VALUES encoded as NaN's.
Revision 8325 from the octave-forge repository (http://octave.sourceforge.net)

[3] Alois Schloegl, BioSig - An application of Octave, 2006
available online at http://arxiv.org/abs/cs/0603001



http://openmp.org/wp/
http://arxiv.org/abs/cs/0603001

	Introduction
	Method
	Results
	Discussion
	References

